L(s) = 1 | + 2·3-s − 6·7-s + 2·9-s − 6·13-s − 2·17-s − 8·19-s − 12·21-s − 2·23-s + 6·27-s + 2·37-s − 12·39-s − 20·41-s + 10·43-s − 6·47-s + 18·49-s − 4·51-s + 10·53-s − 16·57-s + 24·59-s + 4·61-s − 12·63-s − 2·67-s − 4·69-s − 2·73-s − 16·79-s + 11·81-s + 10·83-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 2.26·7-s + 2/3·9-s − 1.66·13-s − 0.485·17-s − 1.83·19-s − 2.61·21-s − 0.417·23-s + 1.15·27-s + 0.328·37-s − 1.92·39-s − 3.12·41-s + 1.52·43-s − 0.875·47-s + 18/7·49-s − 0.560·51-s + 1.37·53-s − 2.11·57-s + 3.12·59-s + 0.512·61-s − 1.51·63-s − 0.244·67-s − 0.481·69-s − 0.234·73-s − 1.80·79-s + 11/9·81-s + 1.09·83-s + ⋯ |
Λ(s)=(=(640000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(640000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
640000
= 210⋅54
|
Sign: |
1
|
Analytic conductor: |
40.8069 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 640000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9947770355 |
L(21) |
≈ |
0.9947770355 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 11 | C22 | 1−18T2+p2T4 |
| 13 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 17 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 29 | C2 | (1−pT2)2 |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 47 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 53 | C2 | (1−14T+pT2)(1+4T+pT2) |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 71 | C22 | 1−138T2+p2T4 |
| 73 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C22 | 1−6T+18T2−6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19919946969799408617834836787, −10.12019770827379467208749869707, −9.724690470722904152278049104281, −8.991661113158697161383666627446, −8.987052401958675011738244603072, −8.452724393400733958631181553980, −8.069463989498949098821476824004, −7.38569260731394457793209783807, −6.92574740119835516732910322817, −6.63422051205586832692203262238, −6.44874293123435635520929336145, −5.60819060416649640444834770186, −5.17525279931901536021265829349, −4.24383002231607724826439919838, −4.18371058760003549663218260902, −3.26785303674686534517367493068, −3.09577955010136171888452269471, −2.22325946034601879952506452022, −2.21567402034006199968334476966, −0.42870044250894246003153245453,
0.42870044250894246003153245453, 2.21567402034006199968334476966, 2.22325946034601879952506452022, 3.09577955010136171888452269471, 3.26785303674686534517367493068, 4.18371058760003549663218260902, 4.24383002231607724826439919838, 5.17525279931901536021265829349, 5.60819060416649640444834770186, 6.44874293123435635520929336145, 6.63422051205586832692203262238, 6.92574740119835516732910322817, 7.38569260731394457793209783807, 8.069463989498949098821476824004, 8.452724393400733958631181553980, 8.987052401958675011738244603072, 8.991661113158697161383666627446, 9.724690470722904152278049104281, 10.12019770827379467208749869707, 10.19919946969799408617834836787