L(s) = 1 | + 2·3-s + 2·7-s + 2·9-s + 8·13-s − 8·17-s − 8·19-s + 4·21-s + 10·23-s + 6·27-s + 16·39-s − 8·41-s + 14·43-s + 6·47-s + 2·49-s − 16·51-s + 8·53-s − 16·57-s − 8·59-s − 16·61-s + 4·63-s − 6·67-s + 20·69-s + 8·73-s + 16·79-s + 11·81-s − 10·83-s + 16·91-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.755·7-s + 2/3·9-s + 2.21·13-s − 1.94·17-s − 1.83·19-s + 0.872·21-s + 2.08·23-s + 1.15·27-s + 2.56·39-s − 1.24·41-s + 2.13·43-s + 0.875·47-s + 2/7·49-s − 2.24·51-s + 1.09·53-s − 2.11·57-s − 1.04·59-s − 2.04·61-s + 0.503·63-s − 0.733·67-s + 2.40·69-s + 0.936·73-s + 1.80·79-s + 11/9·81-s − 1.09·83-s + 1.67·91-s + ⋯ |
Λ(s)=(=(640000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(640000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
640000
= 210⋅54
|
Sign: |
1
|
Analytic conductor: |
40.8069 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 640000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.648160288 |
L(21) |
≈ |
3.648160288 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 17 | C22 | 1+8T+32T2+8pT3+p2T4 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C22 | 1+2T2+p2T4 |
| 37 | C22 | 1+p2T4 |
| 41 | C2 | (1+4T+pT2)2 |
| 43 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 47 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 53 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C2 | (1+8T+pT2)2 |
| 67 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 71 | C22 | 1+114T2+p2T4 |
| 73 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1+10T+50T2+10pT3+p2T4 |
| 89 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 97 | C22 | 1−24T+288T2−24pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55374786445866496768684134962, −10.29097544765293290287876127753, −9.089996388508825785562720946344, −9.052485826671851602418182376027, −8.747004119777754145033551374780, −8.743942219416152535117199098085, −7.83665134145972727486867128390, −7.83028897057092040245201781733, −6.90187234889065872877206094653, −6.68666952001963490752195364968, −6.20712555634431725100270999448, −5.75823904353993206637646944286, −4.78108752864557783268703417048, −4.65076702289541684965087046332, −4.03416747726069029576543962573, −3.59024636686226889727514752069, −2.89515212615180721093441613575, −2.35336550025024280112408643865, −1.75930866726089681030256218148, −0.959948261472095265651885227825,
0.959948261472095265651885227825, 1.75930866726089681030256218148, 2.35336550025024280112408643865, 2.89515212615180721093441613575, 3.59024636686226889727514752069, 4.03416747726069029576543962573, 4.65076702289541684965087046332, 4.78108752864557783268703417048, 5.75823904353993206637646944286, 6.20712555634431725100270999448, 6.68666952001963490752195364968, 6.90187234889065872877206094653, 7.83028897057092040245201781733, 7.83665134145972727486867128390, 8.743942219416152535117199098085, 8.747004119777754145033551374780, 9.052485826671851602418182376027, 9.089996388508825785562720946344, 10.29097544765293290287876127753, 10.55374786445866496768684134962