L(s) = 1 | − 4-s − 2·5-s − 4·11-s + 16-s − 12·19-s + 2·20-s − 25-s − 18·29-s − 4·31-s − 22·41-s + 4·44-s + 13·49-s + 8·55-s + 8·59-s − 14·61-s − 64-s − 12·71-s + 12·76-s + 24·79-s − 2·80-s − 2·89-s + 24·95-s + 100-s + 4·101-s − 14·109-s + 18·116-s − 10·121-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.894·5-s − 1.20·11-s + 1/4·16-s − 2.75·19-s + 0.447·20-s − 1/5·25-s − 3.34·29-s − 0.718·31-s − 3.43·41-s + 0.603·44-s + 13/7·49-s + 1.07·55-s + 1.04·59-s − 1.79·61-s − 1/8·64-s − 1.42·71-s + 1.37·76-s + 2.70·79-s − 0.223·80-s − 0.211·89-s + 2.46·95-s + 1/10·100-s + 0.398·101-s − 1.34·109-s + 1.67·116-s − 0.909·121-s + ⋯ |
Λ(s)=(=(656100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(656100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
656100
= 22⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
41.8335 |
Root analytic conductor: |
2.54320 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 656100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | | 1 |
| 5 | C2 | 1+2T+pT2 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C22 | 1−45T2+p2T4 |
| 29 | C2 | (1+9T+pT2)2 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+11T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−45T2+p2T4 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1+7T+pT2)2 |
| 67 | C22 | 1−13T2+p2T4 |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | C22 | 1−45T2+p2T4 |
| 89 | C2 | (1+T+pT2)2 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17883907488857588694831212536, −9.586506805980223172737277751495, −8.927895939250911386391102622991, −8.924112324095231111501790289339, −8.193778223586007174045619339017, −8.090914453733625316899062029754, −7.38424231783881445130406252641, −7.28747656041900917098478454085, −6.54201123385877517129664791782, −6.10521963207707746450126980464, −5.35628086966803970879463285667, −5.29633122825214424114841254839, −4.52829153612623436996189583037, −3.95206760983480762547768841836, −3.78168104628012741309522551527, −3.10427971779357953583827368712, −2.11786822605608749364722969462, −1.86627265350834450046512039765, 0, 0,
1.86627265350834450046512039765, 2.11786822605608749364722969462, 3.10427971779357953583827368712, 3.78168104628012741309522551527, 3.95206760983480762547768841836, 4.52829153612623436996189583037, 5.29633122825214424114841254839, 5.35628086966803970879463285667, 6.10521963207707746450126980464, 6.54201123385877517129664791782, 7.28747656041900917098478454085, 7.38424231783881445130406252641, 8.090914453733625316899062029754, 8.193778223586007174045619339017, 8.924112324095231111501790289339, 8.927895939250911386391102622991, 9.586506805980223172737277751495, 10.17883907488857588694831212536