L(s) = 1 | + 6·3-s + 3·5-s + 2·7-s + 27·9-s + 15·11-s − 23·13-s + 18·15-s − 34·17-s + 137·19-s + 12·21-s + 201·23-s − 193·25-s + 108·27-s − 66·29-s + 464·31-s + 90·33-s + 6·35-s − 140·37-s − 138·39-s − 45·41-s + 407·43-s + 81·45-s + 114·47-s − 482·49-s − 204·51-s + 792·53-s + 45·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.268·5-s + 0.107·7-s + 9-s + 0.411·11-s − 0.490·13-s + 0.309·15-s − 0.485·17-s + 1.65·19-s + 0.124·21-s + 1.82·23-s − 1.54·25-s + 0.769·27-s − 0.422·29-s + 2.68·31-s + 0.474·33-s + 0.0289·35-s − 0.622·37-s − 0.566·39-s − 0.171·41-s + 1.44·43-s + 0.268·45-s + 0.353·47-s − 1.40·49-s − 0.560·51-s + 2.05·53-s + 0.110·55-s + ⋯ |
Λ(s)=(=(665856s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(665856s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
665856
= 28⋅32⋅172
|
Sign: |
1
|
Analytic conductor: |
2317.99 |
Root analytic conductor: |
6.93870 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 665856, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
6.607508917 |
L(21) |
≈ |
6.607508917 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 17 | C1 | (1+pT)2 |
good | 5 | D4 | 1−3T+202T2−3p3T3+p6T4 |
| 7 | D4 | 1−2T+486T2−2p3T3+p6T4 |
| 11 | D4 | 1−15T+1462T2−15p3T3+p6T4 |
| 13 | D4 | 1+23T+2064T2+23p3T3+p6T4 |
| 19 | D4 | 1−137T+17154T2−137p3T3+p6T4 |
| 23 | D4 | 1−201T+34384T2−201p3T3+p6T4 |
| 29 | D4 | 1+66T+25546T2+66p3T3+p6T4 |
| 31 | D4 | 1−464T+106170T2−464p3T3+p6T4 |
| 37 | D4 | 1+140T−29670T2+140p3T3+p6T4 |
| 41 | D4 | 1+45T+36592T2+45p3T3+p6T4 |
| 43 | D4 | 1−407T+178266T2−407p3T3+p6T4 |
| 47 | D4 | 1−114T+85270T2−114p3T3+p6T4 |
| 53 | D4 | 1−792T+357286T2−792p3T3+p6T4 |
| 59 | D4 | 1+570T+467662T2+570p3T3+p6T4 |
| 61 | D4 | 1−16T+248202T2−16p3T3+p6T4 |
| 67 | D4 | 1+208T+454758T2+208p3T3+p6T4 |
| 71 | D4 | 1+90T+716038T2+90p3T3+p6T4 |
| 73 | C2 | (1−2pT+p3T2)2 |
| 79 | D4 | 1−764T+1103058T2−764p3T3+p6T4 |
| 83 | D4 | 1−138T+902110T2−138p3T3+p6T4 |
| 89 | D4 | 1−654T+768946T2−654p3T3+p6T4 |
| 97 | D4 | 1+146T+1082754T2+146p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.850418641384548696527887464491, −9.597714813829746035281433612415, −9.074486400134581859404249463038, −9.074216963785299372071046174557, −8.295058783412092579409037897190, −8.006734036988850856298238972935, −7.44148831419494020915863749289, −7.30313087754014174763733251713, −6.55763512103065883410628321829, −6.37822350659271709435643637579, −5.45281473529071606060254848236, −5.27631944498929056491434767062, −4.39591696797228239335789770896, −4.34344323047402360931541384687, −3.36874161883012455346597017295, −3.14936149689019291169557141968, −2.50595583320225255017454040756, −1.99944146754355604165535378692, −1.20745149444770205506083954523, −0.69356551879258903859245915809,
0.69356551879258903859245915809, 1.20745149444770205506083954523, 1.99944146754355604165535378692, 2.50595583320225255017454040756, 3.14936149689019291169557141968, 3.36874161883012455346597017295, 4.34344323047402360931541384687, 4.39591696797228239335789770896, 5.27631944498929056491434767062, 5.45281473529071606060254848236, 6.37822350659271709435643637579, 6.55763512103065883410628321829, 7.30313087754014174763733251713, 7.44148831419494020915863749289, 8.006734036988850856298238972935, 8.295058783412092579409037897190, 9.074216963785299372071046174557, 9.074486400134581859404249463038, 9.597714813829746035281433612415, 9.850418641384548696527887464491