L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s + 2·8-s − 10-s + 11-s − 12-s + 13-s + 15-s + 2·16-s + 2·19-s − 20-s + 22-s − 2·24-s + 26-s + 27-s + 30-s + 2·32-s − 33-s − 2·37-s + 2·38-s − 39-s − 2·40-s + 44-s − 2·48-s + ⋯ |
L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s + 2·8-s − 10-s + 11-s − 12-s + 13-s + 15-s + 2·16-s + 2·19-s − 20-s + 22-s − 2·24-s + 26-s + 27-s + 30-s + 2·32-s − 33-s − 2·37-s + 2·38-s − 39-s − 2·40-s + 44-s − 2·48-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
0.182073 |
Root analytic conductor: |
0.653223 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.321877503 |
L(21) |
≈ |
1.321877503 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+T+T2 |
| 5 | C2 | 1+T+T2 |
| 19 | C1 | (1−T)2 |
good | 2 | C1×C2 | (1−T)2(1+T+T2) |
| 7 | C2 | (1−T+T2)(1+T+T2) |
| 11 | C1×C2 | (1−T)2(1+T+T2) |
| 13 | C1×C2 | (1−T)2(1+T+T2) |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C2 | (1+T+T2)2 |
| 41 | C2 | (1−T+T2)(1+T+T2) |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C2 | (1+T+T2)2 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C2 | (1+T+T2)2 |
| 67 | C2 | (1+T+T2)2 |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C2 | (1−T+T2)(1+T+T2) |
| 83 | C2 | (1−T+T2)(1+T+T2) |
| 89 | C1×C1 | (1−T)2(1+T)2 |
| 97 | C2 | (1+T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67902765044076885685885639404, −10.62263112617358495073049964707, −9.800251267550109782204396607383, −9.499499425048540020274206872204, −8.871761633891009084291801383350, −8.273782596628958866388757061487, −7.920804388662517541291852012680, −7.52378973501114074844991737809, −7.01066731434009246166094142285, −6.69317900147863393963269333666, −6.25648599734183195164879183440, −5.53196818025767612196188082667, −5.49174128296106319361309973377, −4.67521868356753176431705395629, −4.47188274104729856876338173000, −3.87517981966162602449470147794, −3.22144856179938156064369391772, −3.11011177603211712190796048487, −1.58946467751898220065287823715, −1.35611621016606595567620269397,
1.35611621016606595567620269397, 1.58946467751898220065287823715, 3.11011177603211712190796048487, 3.22144856179938156064369391772, 3.87517981966162602449470147794, 4.47188274104729856876338173000, 4.67521868356753176431705395629, 5.49174128296106319361309973377, 5.53196818025767612196188082667, 6.25648599734183195164879183440, 6.69317900147863393963269333666, 7.01066731434009246166094142285, 7.52378973501114074844991737809, 7.920804388662517541291852012680, 8.273782596628958866388757061487, 8.871761633891009084291801383350, 9.499499425048540020274206872204, 9.800251267550109782204396607383, 10.62263112617358495073049964707, 10.67902765044076885685885639404