Properties

Label 4-855e2-1.1-c0e2-0-3
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $0.182073$
Root an. cond. $0.653223$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 2·8-s − 10-s + 11-s − 12-s + 13-s + 15-s + 2·16-s + 2·19-s − 20-s + 22-s − 2·24-s + 26-s + 27-s + 30-s + 2·32-s − 33-s − 2·37-s + 2·38-s − 39-s − 2·40-s + 44-s − 2·48-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 2·8-s − 10-s + 11-s − 12-s + 13-s + 15-s + 2·16-s + 2·19-s − 20-s + 22-s − 2·24-s + 26-s + 27-s + 30-s + 2·32-s − 33-s − 2·37-s + 2·38-s − 39-s − 2·40-s + 44-s − 2·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.182073\)
Root analytic conductor: \(0.653223\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 731025,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.321877503\)
\(L(\frac12)\) \(\approx\) \(1.321877503\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
5$C_2$ \( 1 + T + T^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67902765044076885685885639404, −10.62263112617358495073049964707, −9.800251267550109782204396607383, −9.499499425048540020274206872204, −8.871761633891009084291801383350, −8.273782596628958866388757061487, −7.920804388662517541291852012680, −7.52378973501114074844991737809, −7.01066731434009246166094142285, −6.69317900147863393963269333666, −6.25648599734183195164879183440, −5.53196818025767612196188082667, −5.49174128296106319361309973377, −4.67521868356753176431705395629, −4.47188274104729856876338173000, −3.87517981966162602449470147794, −3.22144856179938156064369391772, −3.11011177603211712190796048487, −1.58946467751898220065287823715, −1.35611621016606595567620269397, 1.35611621016606595567620269397, 1.58946467751898220065287823715, 3.11011177603211712190796048487, 3.22144856179938156064369391772, 3.87517981966162602449470147794, 4.47188274104729856876338173000, 4.67521868356753176431705395629, 5.49174128296106319361309973377, 5.53196818025767612196188082667, 6.25648599734183195164879183440, 6.69317900147863393963269333666, 7.01066731434009246166094142285, 7.52378973501114074844991737809, 7.920804388662517541291852012680, 8.273782596628958866388757061487, 8.871761633891009084291801383350, 9.499499425048540020274206872204, 9.800251267550109782204396607383, 10.62263112617358495073049964707, 10.67902765044076885685885639404

Graph of the $Z$-function along the critical line