L(s) = 1 | − 8·4-s + 9·5-s + 6·11-s + 48·16-s − 38·19-s − 72·20-s + 56·25-s − 48·44-s − 73·49-s + 54·55-s − 206·61-s − 256·64-s + 304·76-s + 432·80-s − 342·95-s − 448·100-s − 204·101-s − 215·121-s + 279·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 2·4-s + 9/5·5-s + 6/11·11-s + 3·16-s − 2·19-s − 3.59·20-s + 2.23·25-s − 1.09·44-s − 1.48·49-s + 0.981·55-s − 3.37·61-s − 4·64-s + 4·76-s + 27/5·80-s − 3.59·95-s − 4.47·100-s − 2.01·101-s − 1.77·121-s + 2.23·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(731025s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
542.753 |
Root analytic conductor: |
4.82670 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
1.346109217 |
L(21) |
≈ |
1.346109217 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1−9T+p2T2 |
| 19 | C1 | (1+pT)2 |
good | 2 | C2 | (1+p2T2)2 |
| 7 | C2 | (1−5T+p2T2)(1+5T+p2T2) |
| 11 | C2 | (1−3T+p2T2)2 |
| 13 | C2 | (1+p2T2)2 |
| 17 | C2 | (1−15T+p2T2)(1+15T+p2T2) |
| 23 | C2 | (1−30T+p2T2)(1+30T+p2T2) |
| 29 | C1×C1 | (1−pT)2(1+pT)2 |
| 31 | C1×C1 | (1−pT)2(1+pT)2 |
| 37 | C2 | (1+p2T2)2 |
| 41 | C1×C1 | (1−pT)2(1+pT)2 |
| 43 | C2 | (1−85T+p2T2)(1+85T+p2T2) |
| 47 | C2 | (1−75T+p2T2)(1+75T+p2T2) |
| 53 | C2 | (1+p2T2)2 |
| 59 | C1×C1 | (1−pT)2(1+pT)2 |
| 61 | C2 | (1+103T+p2T2)2 |
| 67 | C2 | (1+p2T2)2 |
| 71 | C1×C1 | (1−pT)2(1+pT)2 |
| 73 | C2 | (1−25T+p2T2)(1+25T+p2T2) |
| 79 | C1×C1 | (1−pT)2(1+pT)2 |
| 83 | C2 | (1−90T+p2T2)(1+90T+p2T2) |
| 89 | C1×C1 | (1−pT)2(1+pT)2 |
| 97 | C2 | (1+p2T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21411103908636647654581436197, −9.550842468510577781871009122963, −9.400871792025640174763422465049, −9.073566620157399150618481857974, −8.614997221610750450508404222912, −8.322030024886761074478638945232, −7.86535701289578131786832250463, −7.15558748746560826001833132181, −6.51995805698792471569870531927, −6.06133435366210021883234367630, −5.97240980051552956224109535402, −5.20346406440331854273489059783, −4.92132482015654401759069009510, −4.37262569318665107873348789605, −4.07599810484994994673126727434, −3.27285391371655388459377380395, −2.74291947162393035842154517126, −1.76823942707055177821230305045, −1.43959609381118701976508448487, −0.40827917194358246516163146790,
0.40827917194358246516163146790, 1.43959609381118701976508448487, 1.76823942707055177821230305045, 2.74291947162393035842154517126, 3.27285391371655388459377380395, 4.07599810484994994673126727434, 4.37262569318665107873348789605, 4.92132482015654401759069009510, 5.20346406440331854273489059783, 5.97240980051552956224109535402, 6.06133435366210021883234367630, 6.51995805698792471569870531927, 7.15558748746560826001833132181, 7.86535701289578131786832250463, 8.322030024886761074478638945232, 8.614997221610750450508404222912, 9.073566620157399150618481857974, 9.400871792025640174763422465049, 9.550842468510577781871009122963, 10.21411103908636647654581436197