Properties

Label 4-855e2-1.1-c2e2-0-0
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $542.753$
Root an. cond. $4.82670$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 9·5-s + 6·11-s + 48·16-s − 38·19-s − 72·20-s + 56·25-s − 48·44-s − 73·49-s + 54·55-s − 206·61-s − 256·64-s + 304·76-s + 432·80-s − 342·95-s − 448·100-s − 204·101-s − 215·121-s + 279·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·4-s + 9/5·5-s + 6/11·11-s + 3·16-s − 2·19-s − 3.59·20-s + 2.23·25-s − 1.09·44-s − 1.48·49-s + 0.981·55-s − 3.37·61-s − 4·64-s + 4·76-s + 27/5·80-s − 3.59·95-s − 4.47·100-s − 2.01·101-s − 1.77·121-s + 2.23·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(542.753\)
Root analytic conductor: \(4.82670\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 731025,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.346109217\)
\(L(\frac12)\) \(\approx\) \(1.346109217\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 - 9 T + p^{2} T^{2} \)
19$C_1$ \( ( 1 + p T )^{2} \)
good2$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 - 5 T + p^{2} T^{2} )( 1 + 5 T + p^{2} T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p^{2} T^{2} )^{2} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 15 T + p^{2} T^{2} )( 1 + 15 T + p^{2} T^{2} ) \)
23$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )( 1 + 30 T + p^{2} T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2$ \( ( 1 - 85 T + p^{2} T^{2} )( 1 + 85 T + p^{2} T^{2} ) \)
47$C_2$ \( ( 1 - 75 T + p^{2} T^{2} )( 1 + 75 T + p^{2} T^{2} ) \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_2$ \( ( 1 + 103 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 - 25 T + p^{2} T^{2} )( 1 + 25 T + p^{2} T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )( 1 + 90 T + p^{2} T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
97$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21411103908636647654581436197, −9.550842468510577781871009122963, −9.400871792025640174763422465049, −9.073566620157399150618481857974, −8.614997221610750450508404222912, −8.322030024886761074478638945232, −7.86535701289578131786832250463, −7.15558748746560826001833132181, −6.51995805698792471569870531927, −6.06133435366210021883234367630, −5.97240980051552956224109535402, −5.20346406440331854273489059783, −4.92132482015654401759069009510, −4.37262569318665107873348789605, −4.07599810484994994673126727434, −3.27285391371655388459377380395, −2.74291947162393035842154517126, −1.76823942707055177821230305045, −1.43959609381118701976508448487, −0.40827917194358246516163146790, 0.40827917194358246516163146790, 1.43959609381118701976508448487, 1.76823942707055177821230305045, 2.74291947162393035842154517126, 3.27285391371655388459377380395, 4.07599810484994994673126727434, 4.37262569318665107873348789605, 4.92132482015654401759069009510, 5.20346406440331854273489059783, 5.97240980051552956224109535402, 6.06133435366210021883234367630, 6.51995805698792471569870531927, 7.15558748746560826001833132181, 7.86535701289578131786832250463, 8.322030024886761074478638945232, 8.614997221610750450508404222912, 9.073566620157399150618481857974, 9.400871792025640174763422465049, 9.550842468510577781871009122963, 10.21411103908636647654581436197

Graph of the $Z$-function along the critical line