L(s) = 1 | − 2·2-s + 3·4-s − 7-s − 4·8-s − 5·9-s + 6·11-s + 2·14-s + 5·16-s + 10·18-s − 12·22-s − 3·28-s − 12·29-s − 6·32-s − 15·36-s − 16·37-s − 16·43-s + 18·44-s + 49-s + 24·53-s + 4·56-s + 24·58-s + 5·63-s + 7·64-s + 14·67-s + 12·71-s + 20·72-s + 32·74-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 0.377·7-s − 1.41·8-s − 5/3·9-s + 1.80·11-s + 0.534·14-s + 5/4·16-s + 2.35·18-s − 2.55·22-s − 0.566·28-s − 2.22·29-s − 1.06·32-s − 5/2·36-s − 2.63·37-s − 2.43·43-s + 2.71·44-s + 1/7·49-s + 3.29·53-s + 0.534·56-s + 3.15·58-s + 0.629·63-s + 7/8·64-s + 1.71·67-s + 1.42·71-s + 2.35·72-s + 3.71·74-s + ⋯ |
Λ(s)=(=(857500s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(857500s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
857500
= 22⋅54⋅73
|
Sign: |
−1
|
Analytic conductor: |
54.6749 |
Root analytic conductor: |
2.71923 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 857500, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 5 | | 1 |
| 7 | C1 | 1+T |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1−12T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C2 | (1−7T+pT2)2 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 79 | C2 | (1−14T+pT2)2 |
| 83 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 89 | C2 | (1−15T+pT2)(1+15T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.241263185170336936107387248232, −7.62583420866028467275275698765, −7.02864082573576697328686349834, −6.80760429487312719242044771491, −6.40152272675796392235796567725, −5.91589072886351065562126787974, −5.26770803610804114861303773339, −5.17711518617506807839806183328, −3.76060769659553506276694871497, −3.69265834103033057215511968857, −3.22985803075868355514464176224, −2.12269688406492296074462119899, −2.02089552612607080439032267478, −0.926909876778585217976162918755, 0,
0.926909876778585217976162918755, 2.02089552612607080439032267478, 2.12269688406492296074462119899, 3.22985803075868355514464176224, 3.69265834103033057215511968857, 3.76060769659553506276694871497, 5.17711518617506807839806183328, 5.26770803610804114861303773339, 5.91589072886351065562126787974, 6.40152272675796392235796567725, 6.80760429487312719242044771491, 7.02864082573576697328686349834, 7.62583420866028467275275698765, 8.241263185170336936107387248232