Properties

Label 4-857500-1.1-c1e2-0-5
Degree $4$
Conductor $857500$
Sign $-1$
Analytic cond. $54.6749$
Root an. cond. $2.71923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 7-s − 4·8-s − 5·9-s + 6·11-s + 2·14-s + 5·16-s + 10·18-s − 12·22-s − 3·28-s − 12·29-s − 6·32-s − 15·36-s − 16·37-s − 16·43-s + 18·44-s + 49-s + 24·53-s + 4·56-s + 24·58-s + 5·63-s + 7·64-s + 14·67-s + 12·71-s + 20·72-s + 32·74-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 0.377·7-s − 1.41·8-s − 5/3·9-s + 1.80·11-s + 0.534·14-s + 5/4·16-s + 2.35·18-s − 2.55·22-s − 0.566·28-s − 2.22·29-s − 1.06·32-s − 5/2·36-s − 2.63·37-s − 2.43·43-s + 2.71·44-s + 1/7·49-s + 3.29·53-s + 0.534·56-s + 3.15·58-s + 0.629·63-s + 7/8·64-s + 1.71·67-s + 1.42·71-s + 2.35·72-s + 3.71·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 857500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 857500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(857500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(54.6749\)
Root analytic conductor: \(2.71923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 857500,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
5 \( 1 \)
7$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.241263185170336936107387248232, −7.62583420866028467275275698765, −7.02864082573576697328686349834, −6.80760429487312719242044771491, −6.40152272675796392235796567725, −5.91589072886351065562126787974, −5.26770803610804114861303773339, −5.17711518617506807839806183328, −3.76060769659553506276694871497, −3.69265834103033057215511968857, −3.22985803075868355514464176224, −2.12269688406492296074462119899, −2.02089552612607080439032267478, −0.926909876778585217976162918755, 0, 0.926909876778585217976162918755, 2.02089552612607080439032267478, 2.12269688406492296074462119899, 3.22985803075868355514464176224, 3.69265834103033057215511968857, 3.76060769659553506276694871497, 5.17711518617506807839806183328, 5.26770803610804114861303773339, 5.91589072886351065562126787974, 6.40152272675796392235796567725, 6.80760429487312719242044771491, 7.02864082573576697328686349834, 7.62583420866028467275275698765, 8.241263185170336936107387248232

Graph of the $Z$-function along the critical line