Properties

Label 4-857500-1.1-c1e2-0-7
Degree 44
Conductor 857500857500
Sign 1-1
Analytic cond. 54.674954.6749
Root an. cond. 2.719232.71923
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 11

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 7-s + 4·8-s − 2·9-s − 2·14-s + 5·16-s − 4·18-s − 3·28-s − 12·29-s + 6·32-s − 6·36-s − 4·37-s − 16·43-s + 49-s − 12·53-s − 4·56-s − 24·58-s + 2·63-s + 7·64-s + 8·67-s − 8·72-s − 8·74-s + 16·79-s − 5·81-s − 32·86-s + 2·98-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.377·7-s + 1.41·8-s − 2/3·9-s − 0.534·14-s + 5/4·16-s − 0.942·18-s − 0.566·28-s − 2.22·29-s + 1.06·32-s − 36-s − 0.657·37-s − 2.43·43-s + 1/7·49-s − 1.64·53-s − 0.534·56-s − 3.15·58-s + 0.251·63-s + 7/8·64-s + 0.977·67-s − 0.942·72-s − 0.929·74-s + 1.80·79-s − 5/9·81-s − 3.45·86-s + 0.202·98-s + ⋯

Functional equation

Λ(s)=(857500s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 857500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(857500s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 857500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 857500857500    =    2254732^{2} \cdot 5^{4} \cdot 7^{3}
Sign: 1-1
Analytic conductor: 54.674954.6749
Root analytic conductor: 2.719232.71923
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 11
Selberg data: (4, 857500, ( :1/2,1/2), 1)(4,\ 857500,\ (\ :1/2, 1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 (1T)2 ( 1 - T )^{2}
5 1 1
7C1C_1 1+T 1 + T
good3C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
11C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
13C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
17C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
19C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
23C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
29C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
31C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
37C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
41C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
43C2C_2 (1+8T+pT2)2 ( 1 + 8 T + p T^{2} )^{2}
47C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
53C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
59C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
61C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
67C2C_2 (14T+pT2)2 ( 1 - 4 T + p T^{2} )^{2}
71C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
73C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
79C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
83C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
89C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
97C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.71895664384636679391588711627, −7.60556812848957435561623382149, −6.73571587686584923478967639363, −6.66965130292041403123447657278, −6.15190325448345686265108903037, −5.59857578974307577358363282055, −5.12614454716073682582164065811, −5.04607295657079957887442801881, −4.11500666640753372808858013263, −3.77049860941673777607586608067, −3.28327332646103144207952017478, −2.83590121110111537782644859852, −2.07204529193989626181377807359, −1.54150783577442522625509630661, 0, 1.54150783577442522625509630661, 2.07204529193989626181377807359, 2.83590121110111537782644859852, 3.28327332646103144207952017478, 3.77049860941673777607586608067, 4.11500666640753372808858013263, 5.04607295657079957887442801881, 5.12614454716073682582164065811, 5.59857578974307577358363282055, 6.15190325448345686265108903037, 6.66965130292041403123447657278, 6.73571587686584923478967639363, 7.60556812848957435561623382149, 7.71895664384636679391588711627

Graph of the ZZ-function along the critical line