Properties

Label 4-8624e2-1.1-c1e2-0-7
Degree $4$
Conductor $74373376$
Sign $1$
Analytic cond. $4742.11$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 2·11-s − 8·25-s − 8·29-s + 16·43-s − 12·53-s + 8·67-s + 24·71-s + 24·79-s + 27·81-s + 12·99-s − 8·109-s − 20·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 8·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 2·9-s − 0.603·11-s − 8/5·25-s − 1.48·29-s + 2.43·43-s − 1.64·53-s + 0.977·67-s + 2.84·71-s + 2.70·79-s + 3·81-s + 1.20·99-s − 0.766·109-s − 1.88·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.615·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74373376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74373376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74373376\)    =    \(2^{8} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(4742.11\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 74373376,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.836077418\)
\(L(\frac12)\) \(\approx\) \(1.836077418\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 64 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 144 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.982870676322914666258147112812, −7.81641009404354391744134080871, −7.29450663257727973833320704485, −6.94237552179863347379571789657, −6.45306181284646757897882998227, −6.17015629153820786769105593286, −5.84248296529944592015122544326, −5.53616967459082101241042101320, −5.23710442431232331758008912919, −5.06037535528847176776594851342, −4.29599160630098891137334237950, −4.10985400737049574255360821776, −3.47416686603466444580856063233, −3.40735689966014009037137882642, −2.82484703394178380554793926802, −2.39118950754729471895055389250, −2.10130451330242877490616940628, −1.71148395090277248856416209999, −0.56442379601835038706137805515, −0.53332021707265700610164652776, 0.53332021707265700610164652776, 0.56442379601835038706137805515, 1.71148395090277248856416209999, 2.10130451330242877490616940628, 2.39118950754729471895055389250, 2.82484703394178380554793926802, 3.40735689966014009037137882642, 3.47416686603466444580856063233, 4.10985400737049574255360821776, 4.29599160630098891137334237950, 5.06037535528847176776594851342, 5.23710442431232331758008912919, 5.53616967459082101241042101320, 5.84248296529944592015122544326, 6.17015629153820786769105593286, 6.45306181284646757897882998227, 6.94237552179863347379571789657, 7.29450663257727973833320704485, 7.81641009404354391744134080871, 7.982870676322914666258147112812

Graph of the $Z$-function along the critical line