L(s) = 1 | + 2-s + 4-s + 2·5-s + 8-s − 3·9-s + 2·10-s + 7·13-s + 16-s − 3·18-s + 2·20-s − 25-s + 7·26-s − 5·31-s + 32-s − 3·36-s − 3·37-s + 2·40-s + 17·41-s + 2·43-s − 6·45-s + 12·49-s − 50-s + 7·52-s − 14·53-s − 5·62-s + 64-s + 14·65-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s − 9-s + 0.632·10-s + 1.94·13-s + 1/4·16-s − 0.707·18-s + 0.447·20-s − 1/5·25-s + 1.37·26-s − 0.898·31-s + 0.176·32-s − 1/2·36-s − 0.493·37-s + 0.316·40-s + 2.65·41-s + 0.304·43-s − 0.894·45-s + 12/7·49-s − 0.141·50-s + 0.970·52-s − 1.92·53-s − 0.635·62-s + 1/8·64-s + 1.73·65-s + ⋯ |
Λ(s)=(=(86400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(86400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
86400
= 27⋅33⋅52
|
Sign: |
1
|
Analytic conductor: |
5.50893 |
Root analytic conductor: |
1.53202 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 86400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.740408626 |
L(21) |
≈ |
2.740408626 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | C2 | 1+pT2 |
| 5 | C2 | 1−2T+pT2 |
good | 7 | C22 | 1−12T2+p2T4 |
| 11 | C22 | 1+4T2+p2T4 |
| 13 | C2×C2 | (1−4T+pT2)(1−3T+pT2) |
| 17 | C22 | 1+6T2+p2T4 |
| 19 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 23 | C22 | 1+38T2+p2T4 |
| 29 | C22 | 1−27T2+p2T4 |
| 31 | C2×C2 | (1+2T+pT2)(1+3T+pT2) |
| 37 | C2×C2 | (1+T+pT2)(1+2T+pT2) |
| 41 | C2×C2 | (1−12T+pT2)(1−5T+pT2) |
| 43 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 47 | C22 | 1+41T2+p2T4 |
| 53 | C2×C2 | (1+6T+pT2)(1+8T+pT2) |
| 59 | C22 | 1−74T2+p2T4 |
| 61 | C22 | 1+56T2+p2T4 |
| 67 | C2×C2 | (1−4T+pT2)(1+15T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1−7T+pT2) |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1−7T+pT2)(1+14T+pT2) |
| 83 | C2×C2 | (1+4T+pT2)(1+5T+pT2) |
| 89 | C2×C2 | (1+5T+pT2)(1+8T+pT2) |
| 97 | C22 | 1+149T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.591571573744511088115340502899, −9.160034419414180215726734111867, −8.766251798369406384962074165865, −8.209387380765365440010069064812, −7.66231256745553962834077141905, −7.04500977916344118168325020103, −6.28220759056850617012953430051, −5.94026505934767903605988630245, −5.73548045792028319947227566169, −5.07079199384544925369117948462, −4.17146499114302801568134253277, −3.71335665889358725106442849420, −2.94709454418069686548869532704, −2.25429769242260061231712850056, −1.29322624671626594466745176563,
1.29322624671626594466745176563, 2.25429769242260061231712850056, 2.94709454418069686548869532704, 3.71335665889358725106442849420, 4.17146499114302801568134253277, 5.07079199384544925369117948462, 5.73548045792028319947227566169, 5.94026505934767903605988630245, 6.28220759056850617012953430051, 7.04500977916344118168325020103, 7.66231256745553962834077141905, 8.209387380765365440010069064812, 8.766251798369406384962074165865, 9.160034419414180215726734111867, 9.591571573744511088115340502899