L(s) = 1 | − 3-s + 9-s + 8·11-s + 12·13-s + 25-s − 27-s − 8·33-s − 4·37-s − 12·39-s − 16·47-s − 14·49-s − 24·59-s + 28·61-s − 16·71-s − 12·73-s − 75-s + 81-s + 24·83-s + 4·97-s + 8·99-s + 8·107-s − 36·109-s + 4·111-s + 12·117-s + 26·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 2.41·11-s + 3.32·13-s + 1/5·25-s − 0.192·27-s − 1.39·33-s − 0.657·37-s − 1.92·39-s − 2.33·47-s − 2·49-s − 3.12·59-s + 3.58·61-s − 1.89·71-s − 1.40·73-s − 0.115·75-s + 1/9·81-s + 2.63·83-s + 0.406·97-s + 0.804·99-s + 0.773·107-s − 3.44·109-s + 0.379·111-s + 1.10·117-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(86400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(86400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
86400
= 27⋅33⋅52
|
Sign: |
1
|
Analytic conductor: |
5.50893 |
Root analytic conductor: |
1.53202 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 86400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.680677638 |
L(21) |
≈ |
1.680677638 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C2 | (1−6T+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−14T+pT2)2 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.487642964123562756489741043280, −9.234498555197333169762430563636, −8.663099716937980035576099714984, −8.372242663067272040741337380641, −7.76560916456884806442341251241, −6.71560882928791827542770443897, −6.58285993178476791834968599347, −6.23234003008114203357336027651, −5.74168392413099570963868387782, −4.86312932086210572949074191291, −4.19803603229033482796144552370, −3.57148112685573562185271725821, −3.38984665882479408513314051846, −1.48909737355432343830877670544, −1.36054514292875137606341288502,
1.36054514292875137606341288502, 1.48909737355432343830877670544, 3.38984665882479408513314051846, 3.57148112685573562185271725821, 4.19803603229033482796144552370, 4.86312932086210572949074191291, 5.74168392413099570963868387782, 6.23234003008114203357336027651, 6.58285993178476791834968599347, 6.71560882928791827542770443897, 7.76560916456884806442341251241, 8.372242663067272040741337380641, 8.663099716937980035576099714984, 9.234498555197333169762430563636, 9.487642964123562756489741043280