Properties

Label 4-86400-1.1-c1e2-0-20
Degree $4$
Conductor $86400$
Sign $-1$
Analytic cond. $5.50893$
Root an. cond. $1.53202$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 4·5-s − 6-s − 8-s + 9-s + 4·10-s + 12-s − 4·15-s + 16-s − 18-s − 8·19-s − 4·20-s + 2·23-s − 24-s + 11·25-s + 27-s + 10·29-s + 4·30-s − 32-s + 36-s + 8·38-s + 4·40-s − 2·43-s − 4·45-s − 2·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.78·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.26·10-s + 0.288·12-s − 1.03·15-s + 1/4·16-s − 0.235·18-s − 1.83·19-s − 0.894·20-s + 0.417·23-s − 0.204·24-s + 11/5·25-s + 0.192·27-s + 1.85·29-s + 0.730·30-s − 0.176·32-s + 1/6·36-s + 1.29·38-s + 0.632·40-s − 0.304·43-s − 0.596·45-s − 0.294·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(86400\)    =    \(2^{7} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(5.50893\)
Root analytic conductor: \(1.53202\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 86400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( 1 - T \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + p T^{2} ) \)
79$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.339567424682786430784453915247, −8.673694079790885226677238103851, −8.362799533606162582050264738401, −8.159133907905646093204816135301, −7.60740765702098772208639847156, −6.99699840001464631994095197982, −6.59540810342012874523421779116, −6.11652543717961444714848438316, −4.81772000759950662932311022970, −4.63656510970371918111347666082, −3.88273063652071506820021780492, −3.20886576284072801053693960150, −2.66417888904161937297868600496, −1.46767016993003419922605384526, 0, 1.46767016993003419922605384526, 2.66417888904161937297868600496, 3.20886576284072801053693960150, 3.88273063652071506820021780492, 4.63656510970371918111347666082, 4.81772000759950662932311022970, 6.11652543717961444714848438316, 6.59540810342012874523421779116, 6.99699840001464631994095197982, 7.60740765702098772208639847156, 8.159133907905646093204816135301, 8.362799533606162582050264738401, 8.673694079790885226677238103851, 9.339567424682786430784453915247

Graph of the $Z$-function along the critical line