L(s) = 1 | − 2-s + 3-s + 4-s − 4·5-s − 6-s − 8-s + 9-s + 4·10-s + 12-s − 4·15-s + 16-s − 18-s − 8·19-s − 4·20-s + 2·23-s − 24-s + 11·25-s + 27-s + 10·29-s + 4·30-s − 32-s + 36-s + 8·38-s + 4·40-s − 2·43-s − 4·45-s − 2·46-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.78·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.26·10-s + 0.288·12-s − 1.03·15-s + 1/4·16-s − 0.235·18-s − 1.83·19-s − 0.894·20-s + 0.417·23-s − 0.204·24-s + 11/5·25-s + 0.192·27-s + 1.85·29-s + 0.730·30-s − 0.176·32-s + 1/6·36-s + 1.29·38-s + 0.632·40-s − 0.304·43-s − 0.596·45-s − 0.294·46-s + ⋯ |
Λ(s)=(=(86400s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(86400s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
86400
= 27⋅33⋅52
|
Sign: |
−1
|
Analytic conductor: |
5.50893 |
Root analytic conductor: |
1.53202 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 86400, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 3 | C1 | 1−T |
| 5 | C2 | 1+4T+pT2 |
good | 7 | C22 | 1+8T2+p2T4 |
| 11 | C22 | 1−18T2+p2T4 |
| 13 | C22 | 1−8T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−6T+pT2)(1+4T+pT2) |
| 29 | C2×C2 | (1−8T+pT2)(1−2T+pT2) |
| 31 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 37 | C22 | 1−24T2+p2T4 |
| 41 | C22 | 1−46T2+p2T4 |
| 43 | C2×C2 | (1−6T+pT2)(1+8T+pT2) |
| 47 | C2×C2 | (1+pT2)(1+12T+pT2) |
| 53 | C2×C2 | (1−2T+pT2)(1+10T+pT2) |
| 59 | C22 | 1+98T2+p2T4 |
| 61 | C22 | 1−30T2+p2T4 |
| 67 | C2×C2 | (1+8T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 73 | C2×C2 | (1−10T+pT2)(1+pT2) |
| 79 | C22 | 1−22T2+p2T4 |
| 83 | C22 | 1+122T2+p2T4 |
| 89 | C22 | 1−50T2+p2T4 |
| 97 | C2×C2 | (1+10T+pT2)(1+12T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.339567424682786430784453915247, −8.673694079790885226677238103851, −8.362799533606162582050264738401, −8.159133907905646093204816135301, −7.60740765702098772208639847156, −6.99699840001464631994095197982, −6.59540810342012874523421779116, −6.11652543717961444714848438316, −4.81772000759950662932311022970, −4.63656510970371918111347666082, −3.88273063652071506820021780492, −3.20886576284072801053693960150, −2.66417888904161937297868600496, −1.46767016993003419922605384526, 0,
1.46767016993003419922605384526, 2.66417888904161937297868600496, 3.20886576284072801053693960150, 3.88273063652071506820021780492, 4.63656510970371918111347666082, 4.81772000759950662932311022970, 6.11652543717961444714848438316, 6.59540810342012874523421779116, 6.99699840001464631994095197982, 7.60740765702098772208639847156, 8.159133907905646093204816135301, 8.362799533606162582050264738401, 8.673694079790885226677238103851, 9.339567424682786430784453915247