L(s) = 1 | + 2-s − 3-s + 4-s − 2·5-s − 6-s + 8-s + 9-s − 2·10-s − 12-s + 2·15-s + 16-s + 18-s − 2·20-s − 24-s − 25-s − 27-s + 2·30-s + 16·31-s + 32-s + 36-s − 2·40-s − 2·45-s − 48-s + 10·49-s − 50-s + 12·53-s − 54-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.288·12-s + 0.516·15-s + 1/4·16-s + 0.235·18-s − 0.447·20-s − 0.204·24-s − 1/5·25-s − 0.192·27-s + 0.365·30-s + 2.87·31-s + 0.176·32-s + 1/6·36-s − 0.316·40-s − 0.298·45-s − 0.144·48-s + 10/7·49-s − 0.141·50-s + 1.64·53-s − 0.136·54-s + ⋯ |
Λ(s)=(=(86400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(86400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
86400
= 27⋅33⋅52
|
Sign: |
1
|
Analytic conductor: |
5.50893 |
Root analytic conductor: |
1.53202 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 86400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.607471794 |
L(21) |
≈ |
1.607471794 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | C1 | 1+T |
| 5 | C2 | 1+2T+pT2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C22 | 1−18T2+p2T4 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−18T2+p2T4 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.931431226499242282222146919527, −9.157336199204351077980875293537, −8.588983819760473461349159873067, −7.993325505837274428226208842001, −7.72383013837896400990817802991, −6.91860267058513733570889987370, −6.70671493958395410966482079315, −5.96241332719418166096565172640, −5.53507472959269894341516046375, −4.80161290199432400145705451230, −4.31416185438226392437568037299, −3.86701189083440126449303834685, −3.03842026071621200793542388091, −2.28949239380223024466903159190, −0.925919216123349724115980684505,
0.925919216123349724115980684505, 2.28949239380223024466903159190, 3.03842026071621200793542388091, 3.86701189083440126449303834685, 4.31416185438226392437568037299, 4.80161290199432400145705451230, 5.53507472959269894341516046375, 5.96241332719418166096565172640, 6.70671493958395410966482079315, 6.91860267058513733570889987370, 7.72383013837896400990817802991, 7.993325505837274428226208842001, 8.588983819760473461349159873067, 9.157336199204351077980875293537, 9.931431226499242282222146919527