L(s) = 1 | + 3-s + 9-s − 12·13-s − 16·23-s + 25-s + 27-s − 12·37-s − 12·39-s + 16·47-s + 2·49-s + 12·61-s − 16·69-s − 28·73-s + 75-s + 81-s + 24·83-s + 4·97-s + 8·107-s − 20·109-s − 12·111-s − 12·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 16·141-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s − 3.32·13-s − 3.33·23-s + 1/5·25-s + 0.192·27-s − 1.97·37-s − 1.92·39-s + 2.33·47-s + 2/7·49-s + 1.53·61-s − 1.92·69-s − 3.27·73-s + 0.115·75-s + 1/9·81-s + 2.63·83-s + 0.406·97-s + 0.773·107-s − 1.91·109-s − 1.13·111-s − 1.10·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.34·141-s + ⋯ |
Λ(s)=(=(86400s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(86400s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
86400
= 27⋅33⋅52
|
Sign: |
−1
|
Analytic conductor: |
5.50893 |
Root analytic conductor: |
1.53202 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 86400, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1−T |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+6T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+8T+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−6T+pT2)2 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+14T+pT2)2 |
| 79 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.345822684053937464266140209197, −9.138788409882082860623313179234, −8.312681871958482675893970014801, −7.929044973464791963060046214031, −7.34594365176835478558310775458, −7.18880346144848821197627995561, −6.46041242786302870623045801913, −5.61049576810701540702833296151, −5.28897888504504330389281711769, −4.43140184316888462520939708171, −4.13728859524865050162716547657, −3.20808194979498891977471116338, −2.19282779410354418054159546466, −2.19180563382997996757520036314, 0,
2.19180563382997996757520036314, 2.19282779410354418054159546466, 3.20808194979498891977471116338, 4.13728859524865050162716547657, 4.43140184316888462520939708171, 5.28897888504504330389281711769, 5.61049576810701540702833296151, 6.46041242786302870623045801913, 7.18880346144848821197627995561, 7.34594365176835478558310775458, 7.929044973464791963060046214031, 8.312681871958482675893970014801, 9.138788409882082860623313179234, 9.345822684053937464266140209197