L(s) = 1 | + 2·11-s − 6·13-s + 9·17-s − 3·19-s − 23-s − 2·29-s − 9·31-s − 2·37-s + 2·41-s − 8·43-s + 5·47-s − 14·49-s + 11·53-s + 2·59-s + 61-s − 12·67-s − 6·71-s − 11·79-s + 17·83-s − 18·89-s − 4·97-s − 24·101-s − 2·103-s + 107-s + 21·109-s + 113-s − 14·121-s + ⋯ |
L(s) = 1 | + 0.603·11-s − 1.66·13-s + 2.18·17-s − 0.688·19-s − 0.208·23-s − 0.371·29-s − 1.61·31-s − 0.328·37-s + 0.312·41-s − 1.21·43-s + 0.729·47-s − 2·49-s + 1.51·53-s + 0.260·59-s + 0.128·61-s − 1.46·67-s − 0.712·71-s − 1.23·79-s + 1.86·83-s − 1.90·89-s − 0.406·97-s − 2.38·101-s − 0.197·103-s + 0.0966·107-s + 2.01·109-s + 0.0940·113-s − 1.27·121-s + ⋯ |
Λ(s)=(=(81000000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(81000000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
81000000
= 26⋅34⋅56
|
Sign: |
1
|
Analytic conductor: |
5164.63 |
Root analytic conductor: |
8.47734 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 81000000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C2 | (1+pT2)2 |
| 11 | D4 | 1−2T+18T2−2pT3+p2T4 |
| 13 | D4 | 1+6T+30T2+6pT3+p2T4 |
| 17 | D4 | 1−9T+43T2−9pT3+p2T4 |
| 19 | D4 | 1+3T+39T2+3pT3+p2T4 |
| 23 | D4 | 1+T+35T2+pT3+p2T4 |
| 29 | D4 | 1+2T+54T2+2pT3+p2T4 |
| 31 | D4 | 1+9T+81T2+9pT3+p2T4 |
| 37 | D4 | 1+2T+70T2+2pT3+p2T4 |
| 41 | D4 | 1−2T+78T2−2pT3+p2T4 |
| 43 | D4 | 1+8T+82T2+8pT3+p2T4 |
| 47 | D4 | 1−5T+69T2−5pT3+p2T4 |
| 53 | D4 | 1−11T+135T2−11pT3+p2T4 |
| 59 | D4 | 1−2T−6T2−2pT3+p2T4 |
| 61 | D4 | 1−T+121T2−pT3+p2T4 |
| 67 | D4 | 1+12T+90T2+12pT3+p2T4 |
| 71 | C4 | 1+6T+26T2+6pT3+p2T4 |
| 73 | C22 | 1+66T2+p2T4 |
| 79 | D4 | 1+11T+187T2+11pT3+p2T4 |
| 83 | D4 | 1−17T+177T2−17pT3+p2T4 |
| 89 | D4 | 1+18T+254T2+18pT3+p2T4 |
| 97 | D4 | 1+4T+118T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.52717325159768530270969810696, −7.28803927068176901567528403245, −6.85840273628066243864076422096, −6.75747143394682731722574367243, −6.09828004558912712089416354179, −5.79271710041246260187830179398, −5.47023078486040518970966375597, −5.29408613760418294991650863625, −4.63128155981621757644337285054, −4.62843278652524055023556625283, −3.85858639540731446301337743784, −3.76529344533187780122124035172, −3.20411575180936709261441894958, −2.96959269291306325093127058862, −2.30346121974547957596504213333, −2.07410347801584169966326927247, −1.33166903669837875939490112405, −1.21521918029060498041211452602, 0, 0,
1.21521918029060498041211452602, 1.33166903669837875939490112405, 2.07410347801584169966326927247, 2.30346121974547957596504213333, 2.96959269291306325093127058862, 3.20411575180936709261441894958, 3.76529344533187780122124035172, 3.85858639540731446301337743784, 4.62843278652524055023556625283, 4.63128155981621757644337285054, 5.29408613760418294991650863625, 5.47023078486040518970966375597, 5.79271710041246260187830179398, 6.09828004558912712089416354179, 6.75747143394682731722574367243, 6.85840273628066243864076422096, 7.28803927068176901567528403245, 7.52717325159768530270969810696