L(s) = 1 | + 7-s + 6·11-s − 6·13-s + 3·17-s − 4·19-s − 2·23-s + 4·29-s − 5·31-s − 10·37-s + 41-s − 9·43-s − 10·47-s − 12·49-s + 5·53-s + 7·59-s − 11·61-s − 16·67-s + 13·71-s + 3·73-s + 6·77-s − 6·79-s − 13·83-s − 2·89-s − 6·91-s + 97-s + 20·101-s + 11·103-s + ⋯ |
L(s) = 1 | + 0.377·7-s + 1.80·11-s − 1.66·13-s + 0.727·17-s − 0.917·19-s − 0.417·23-s + 0.742·29-s − 0.898·31-s − 1.64·37-s + 0.156·41-s − 1.37·43-s − 1.45·47-s − 1.71·49-s + 0.686·53-s + 0.911·59-s − 1.40·61-s − 1.95·67-s + 1.54·71-s + 0.351·73-s + 0.683·77-s − 0.675·79-s − 1.42·83-s − 0.211·89-s − 0.628·91-s + 0.101·97-s + 1.99·101-s + 1.08·103-s + ⋯ |
Λ(s)=(=(81000000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(81000000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
81000000
= 26⋅34⋅56
|
Sign: |
1
|
Analytic conductor: |
5164.63 |
Root analytic conductor: |
8.47734 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 81000000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1−T+13T2−pT3+p2T4 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1+3T+pT2)2 |
| 17 | D4 | 1−3T+25T2−3pT3+p2T4 |
| 19 | D4 | 1+4T+37T2+4pT3+p2T4 |
| 23 | C2 | (1+T+pT2)2 |
| 29 | D4 | 1−4T+17T2−4pT3+p2T4 |
| 31 | D4 | 1+5T+67T2+5pT3+p2T4 |
| 37 | C2 | (1+5T+pT2)2 |
| 41 | D4 | 1−T+51T2−pT3+p2T4 |
| 43 | D4 | 1+9T+95T2+9pT3+p2T4 |
| 47 | D4 | 1+10T+99T2+10pT3+p2T4 |
| 53 | D4 | 1−5T+11T2−5pT3+p2T4 |
| 59 | D4 | 1−7T+99T2−7pT3+p2T4 |
| 61 | D4 | 1+11T+91T2+11pT3+p2T4 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | D4 | 1−13T+173T2−13pT3+p2T4 |
| 73 | D4 | 1−3T+147T2−3pT3+p2T4 |
| 79 | D4 | 1+6T+42T2+6pT3+p2T4 |
| 83 | D4 | 1+13T+207T2+13pT3+p2T4 |
| 89 | D4 | 1+2T+159T2+2pT3+p2T4 |
| 97 | D4 | 1−T+193T2−pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.54726719309340410090036462955, −7.18095392503210580146057814504, −6.79867208305399667236234262571, −6.69843206989267076899089224253, −6.15387871654629026818727070313, −6.06135119365258827593464057962, −5.25821957376228107350716979989, −5.24086959334273367061854008256, −4.64905835335895814375447868681, −4.62890208332682623497980215809, −3.85361036268767644047246528884, −3.85300886583032049669113761785, −3.13709634540880602580262409944, −3.06687510260869426300241099772, −2.20606640864549811066135930900, −2.02221382474457516379643476012, −1.39710677739232928864602318780, −1.25292132931688424660773345651, 0, 0,
1.25292132931688424660773345651, 1.39710677739232928864602318780, 2.02221382474457516379643476012, 2.20606640864549811066135930900, 3.06687510260869426300241099772, 3.13709634540880602580262409944, 3.85300886583032049669113761785, 3.85361036268767644047246528884, 4.62890208332682623497980215809, 4.64905835335895814375447868681, 5.24086959334273367061854008256, 5.25821957376228107350716979989, 6.06135119365258827593464057962, 6.15387871654629026818727070313, 6.69843206989267076899089224253, 6.79867208305399667236234262571, 7.18095392503210580146057814504, 7.54726719309340410090036462955