L(s) = 1 | − 4-s − 2·5-s − 9-s − 10·11-s + 16-s + 10·19-s + 2·20-s − 25-s + 4·29-s + 2·31-s + 36-s + 12·41-s + 10·44-s + 2·45-s + 13·49-s + 20·55-s − 20·59-s − 28·61-s − 64-s − 18·71-s − 10·76-s − 10·79-s − 2·80-s + 81-s − 6·89-s − 20·95-s + 10·99-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.894·5-s − 1/3·9-s − 3.01·11-s + 1/4·16-s + 2.29·19-s + 0.447·20-s − 1/5·25-s + 0.742·29-s + 0.359·31-s + 1/6·36-s + 1.87·41-s + 1.50·44-s + 0.298·45-s + 13/7·49-s + 2.69·55-s − 2.60·59-s − 3.58·61-s − 1/8·64-s − 2.13·71-s − 1.14·76-s − 1.12·79-s − 0.223·80-s + 1/9·81-s − 0.635·89-s − 2.05·95-s + 1.00·99-s + ⋯ |
Λ(s)=(=(864900s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(864900s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
864900
= 22⋅32⋅52⋅312
|
Sign: |
1
|
Analytic conductor: |
55.1467 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 864900, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5467039986 |
L(21) |
≈ |
0.5467039986 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1+2T+pT2 |
| 31 | C1 | (1−T)2 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+5T+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−pT2)2 |
| 19 | C2 | (1−5T+pT2)2 |
| 23 | C22 | 1+35T2+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−85T2+p2T4 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C22 | 1+63T2+p2T4 |
| 59 | C2 | (1+10T+pT2)2 |
| 61 | C2 | (1+14T+pT2)2 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | C2 | (1+9T+pT2)2 |
| 73 | C22 | 1−65T2+p2T4 |
| 79 | C2 | (1+5T+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1+3T+pT2)2 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18874160642155211997753089142, −10.10600486064744863422335040363, −9.211098191991994807640338601733, −9.192122096228278683362482097397, −8.561884869855235754382523425160, −7.953132079078275551480790536103, −7.64378437401921216055901242366, −7.61616000176016779642244096715, −7.29121855227043982553249199146, −6.22374225769867074162870602737, −5.87805932560752718461395752671, −5.30221655571935217398086244202, −5.19178200871947861699615301855, −4.36839168767893088398497180253, −4.29577267265008237659604437346, −3.12450224960058915117254787891, −2.98857294562736104201925937535, −2.63243592550045901050677890798, −1.40172750430398820767725177859, −0.36339773528994289038468446489,
0.36339773528994289038468446489, 1.40172750430398820767725177859, 2.63243592550045901050677890798, 2.98857294562736104201925937535, 3.12450224960058915117254787891, 4.29577267265008237659604437346, 4.36839168767893088398497180253, 5.19178200871947861699615301855, 5.30221655571935217398086244202, 5.87805932560752718461395752671, 6.22374225769867074162870602737, 7.29121855227043982553249199146, 7.61616000176016779642244096715, 7.64378437401921216055901242366, 7.953132079078275551480790536103, 8.561884869855235754382523425160, 9.192122096228278683362482097397, 9.211098191991994807640338601733, 10.10600486064744863422335040363, 10.18874160642155211997753089142