Properties

Label 4-930e2-1.1-c1e2-0-1
Degree $4$
Conductor $864900$
Sign $1$
Analytic cond. $55.1467$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s − 9-s − 10·11-s + 16-s + 10·19-s + 2·20-s − 25-s + 4·29-s + 2·31-s + 36-s + 12·41-s + 10·44-s + 2·45-s + 13·49-s + 20·55-s − 20·59-s − 28·61-s − 64-s − 18·71-s − 10·76-s − 10·79-s − 2·80-s + 81-s − 6·89-s − 20·95-s + 10·99-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.894·5-s − 1/3·9-s − 3.01·11-s + 1/4·16-s + 2.29·19-s + 0.447·20-s − 1/5·25-s + 0.742·29-s + 0.359·31-s + 1/6·36-s + 1.87·41-s + 1.50·44-s + 0.298·45-s + 13/7·49-s + 2.69·55-s − 2.60·59-s − 3.58·61-s − 1/8·64-s − 2.13·71-s − 1.14·76-s − 1.12·79-s − 0.223·80-s + 1/9·81-s − 0.635·89-s − 2.05·95-s + 1.00·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(864900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(55.1467\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 864900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5467039986\)
\(L(\frac12)\) \(\approx\) \(0.5467039986\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
31$C_1$ \( ( 1 - T )^{2} \)
good7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 63 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18874160642155211997753089142, −10.10600486064744863422335040363, −9.211098191991994807640338601733, −9.192122096228278683362482097397, −8.561884869855235754382523425160, −7.953132079078275551480790536103, −7.64378437401921216055901242366, −7.61616000176016779642244096715, −7.29121855227043982553249199146, −6.22374225769867074162870602737, −5.87805932560752718461395752671, −5.30221655571935217398086244202, −5.19178200871947861699615301855, −4.36839168767893088398497180253, −4.29577267265008237659604437346, −3.12450224960058915117254787891, −2.98857294562736104201925937535, −2.63243592550045901050677890798, −1.40172750430398820767725177859, −0.36339773528994289038468446489, 0.36339773528994289038468446489, 1.40172750430398820767725177859, 2.63243592550045901050677890798, 2.98857294562736104201925937535, 3.12450224960058915117254787891, 4.29577267265008237659604437346, 4.36839168767893088398497180253, 5.19178200871947861699615301855, 5.30221655571935217398086244202, 5.87805932560752718461395752671, 6.22374225769867074162870602737, 7.29121855227043982553249199146, 7.61616000176016779642244096715, 7.64378437401921216055901242366, 7.953132079078275551480790536103, 8.561884869855235754382523425160, 9.192122096228278683362482097397, 9.211098191991994807640338601733, 10.10600486064744863422335040363, 10.18874160642155211997753089142

Graph of the $Z$-function along the critical line