L(s) = 1 | − 2·5-s + 4·7-s − 2·13-s + 4·17-s − 4·19-s − 4·23-s + 3·25-s − 4·29-s − 8·35-s + 4·37-s − 4·41-s − 8·47-s − 2·49-s − 8·59-s − 4·61-s + 4·65-s + 16·67-s − 16·73-s + 16·79-s − 16·83-s − 8·85-s − 4·89-s − 8·91-s + 8·95-s − 28·101-s + 16·103-s − 16·107-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.51·7-s − 0.554·13-s + 0.970·17-s − 0.917·19-s − 0.834·23-s + 3/5·25-s − 0.742·29-s − 1.35·35-s + 0.657·37-s − 0.624·41-s − 1.16·47-s − 2/7·49-s − 1.04·59-s − 0.512·61-s + 0.496·65-s + 1.95·67-s − 1.87·73-s + 1.80·79-s − 1.75·83-s − 0.867·85-s − 0.423·89-s − 0.838·91-s + 0.820·95-s − 2.78·101-s + 1.57·103-s − 1.54·107-s + ⋯ |
Λ(s)=(=(87609600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(87609600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
87609600
= 28⋅34⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
5586.06 |
Root analytic conductor: |
8.64522 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 87609600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
| 13 | C1 | (1+T)2 |
good | 7 | C2 | (1−2T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 17 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | D4 | 1+4T+30T2+4pT3+p2T4 |
| 29 | D4 | 1+4T+42T2+4pT3+p2T4 |
| 31 | C22 | 1+42T2+p2T4 |
| 37 | D4 | 1−4T−2T2−4pT3+p2T4 |
| 41 | C4 | 1+4T+6T2+4pT3+p2T4 |
| 43 | C2 | (1+pT2)2 |
| 47 | C2 | (1+4T+pT2)2 |
| 53 | C22 | 1+26T2+p2T4 |
| 59 | D4 | 1+8T+54T2+8pT3+p2T4 |
| 61 | D4 | 1+4T+46T2+4pT3+p2T4 |
| 67 | D4 | 1−16T+178T2−16pT3+p2T4 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | D4 | 1+16T+190T2+16pT3+p2T4 |
| 79 | D4 | 1−16T+142T2−16pT3+p2T4 |
| 83 | C2 | (1+8T+pT2)2 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | C22 | 1+174T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.53928565741736582862105781192, −7.36760705411490076301331171588, −6.90763472019682130761682656765, −6.60909506464236844769008738881, −6.11732228827021399748291447723, −5.85721328381193558326302688943, −5.24335244464295165360164816652, −5.20940502283961275252602590700, −4.70302288921122313140494575231, −4.39109677054041065407648951287, −4.13868200220963801418778627032, −3.69289030780213072854720058025, −3.24656157079255885764273954366, −2.93340971749375441862981186755, −2.22369602642011174801552817016, −2.04776720337917005438234830180, −1.30646498703490264752802920334, −1.23372236321440538539139824725, 0, 0,
1.23372236321440538539139824725, 1.30646498703490264752802920334, 2.04776720337917005438234830180, 2.22369602642011174801552817016, 2.93340971749375441862981186755, 3.24656157079255885764273954366, 3.69289030780213072854720058025, 4.13868200220963801418778627032, 4.39109677054041065407648951287, 4.70302288921122313140494575231, 5.20940502283961275252602590700, 5.24335244464295165360164816652, 5.85721328381193558326302688943, 6.11732228827021399748291447723, 6.60909506464236844769008738881, 6.90763472019682130761682656765, 7.36760705411490076301331171588, 7.53928565741736582862105781192