L(s) = 1 | − 8·5-s − 2·13-s + 38·25-s + 16·29-s + 12·37-s − 24·41-s + 2·49-s − 4·61-s + 16·65-s − 20·73-s + 24·89-s + 28·97-s − 16·101-s − 28·109-s + 16·113-s − 6·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s − 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 3.57·5-s − 0.554·13-s + 38/5·25-s + 2.97·29-s + 1.97·37-s − 3.74·41-s + 2/7·49-s − 0.512·61-s + 1.98·65-s − 2.34·73-s + 2.54·89-s + 2.84·97-s − 1.59·101-s − 2.68·109-s + 1.50·113-s − 0.545·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 876096, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.4965390259 |
L(21) |
≈ |
0.4965390259 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+T)2 |
good | 5 | C2 | (1+4T+pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−8T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1+12T+pT2)2 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−12T+pT2)2 |
| 97 | C2 | (1−14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.201733704151596185987903064087, −7.79060854775042365605164468705, −7.47869322356582658895088316447, −6.94787299886291680521490460261, −6.67145474632920446177992614245, −6.19578640602053014565524878691, −5.05645028216135290095057077475, −4.88053255158482796760819813001, −4.39469345798104888310840654068, −4.10665661851761688347162074488, −3.38922081885229144696621278738, −3.17258330639560750206393636102, −2.58928593205915212490307519815, −1.17283728352626636257793590231, −0.38897534472433013470827993329,
0.38897534472433013470827993329, 1.17283728352626636257793590231, 2.58928593205915212490307519815, 3.17258330639560750206393636102, 3.38922081885229144696621278738, 4.10665661851761688347162074488, 4.39469345798104888310840654068, 4.88053255158482796760819813001, 5.05645028216135290095057077475, 6.19578640602053014565524878691, 6.67145474632920446177992614245, 6.94787299886291680521490460261, 7.47869322356582658895088316447, 7.79060854775042365605164468705, 8.201733704151596185987903064087