Properties

Label 4-936e2-1.1-c1e2-0-0
Degree $4$
Conductor $876096$
Sign $1$
Analytic cond. $55.8606$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s − 2·13-s + 38·25-s + 16·29-s + 12·37-s − 24·41-s + 2·49-s − 4·61-s + 16·65-s − 20·73-s + 24·89-s + 28·97-s − 16·101-s − 28·109-s + 16·113-s − 6·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s − 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 3.57·5-s − 0.554·13-s + 38/5·25-s + 2.97·29-s + 1.97·37-s − 3.74·41-s + 2/7·49-s − 0.512·61-s + 1.98·65-s − 2.34·73-s + 2.54·89-s + 2.84·97-s − 1.59·101-s − 2.68·109-s + 1.50·113-s − 0.545·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(876096\)    =    \(2^{6} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(55.8606\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 876096,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4965390259\)
\(L(\frac12)\) \(\approx\) \(0.4965390259\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.201733704151596185987903064087, −7.79060854775042365605164468705, −7.47869322356582658895088316447, −6.94787299886291680521490460261, −6.67145474632920446177992614245, −6.19578640602053014565524878691, −5.05645028216135290095057077475, −4.88053255158482796760819813001, −4.39469345798104888310840654068, −4.10665661851761688347162074488, −3.38922081885229144696621278738, −3.17258330639560750206393636102, −2.58928593205915212490307519815, −1.17283728352626636257793590231, −0.38897534472433013470827993329, 0.38897534472433013470827993329, 1.17283728352626636257793590231, 2.58928593205915212490307519815, 3.17258330639560750206393636102, 3.38922081885229144696621278738, 4.10665661851761688347162074488, 4.39469345798104888310840654068, 4.88053255158482796760819813001, 5.05645028216135290095057077475, 6.19578640602053014565524878691, 6.67145474632920446177992614245, 6.94787299886291680521490460261, 7.47869322356582658895088316447, 7.79060854775042365605164468705, 8.201733704151596185987903064087

Graph of the $Z$-function along the critical line