L(s) = 1 | − 8·5-s − 2·13-s + 38·25-s + 16·29-s + 12·37-s − 24·41-s + 2·49-s − 4·61-s + 16·65-s − 20·73-s + 24·89-s + 28·97-s − 16·101-s − 28·109-s + 16·113-s − 6·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s − 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 3.57·5-s − 0.554·13-s + 38/5·25-s + 2.97·29-s + 1.97·37-s − 3.74·41-s + 2/7·49-s − 0.512·61-s + 1.98·65-s − 2.34·73-s + 2.54·89-s + 2.84·97-s − 1.59·101-s − 2.68·109-s + 1.50·113-s − 0.545·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4965390259\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4965390259\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 13 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 5 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.201733704151596185987903064087, −7.79060854775042365605164468705, −7.47869322356582658895088316447, −6.94787299886291680521490460261, −6.67145474632920446177992614245, −6.19578640602053014565524878691, −5.05645028216135290095057077475, −4.88053255158482796760819813001, −4.39469345798104888310840654068, −4.10665661851761688347162074488, −3.38922081885229144696621278738, −3.17258330639560750206393636102, −2.58928593205915212490307519815, −1.17283728352626636257793590231, −0.38897534472433013470827993329,
0.38897534472433013470827993329, 1.17283728352626636257793590231, 2.58928593205915212490307519815, 3.17258330639560750206393636102, 3.38922081885229144696621278738, 4.10665661851761688347162074488, 4.39469345798104888310840654068, 4.88053255158482796760819813001, 5.05645028216135290095057077475, 6.19578640602053014565524878691, 6.67145474632920446177992614245, 6.94787299886291680521490460261, 7.47869322356582658895088316447, 7.79060854775042365605164468705, 8.201733704151596185987903064087