Properties

Label 4-936e2-1.1-c1e2-0-19
Degree $4$
Conductor $876096$
Sign $1$
Analytic cond. $55.8606$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 4·13-s − 4·19-s − 4·25-s + 2·37-s + 12·43-s + 2·49-s − 8·61-s + 8·67-s + 6·73-s + 8·79-s + 16·91-s + 14·97-s − 20·103-s + 6·109-s + 8·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + ⋯
L(s)  = 1  + 1.51·7-s + 1.10·13-s − 0.917·19-s − 4/5·25-s + 0.328·37-s + 1.82·43-s + 2/7·49-s − 1.02·61-s + 0.977·67-s + 0.702·73-s + 0.900·79-s + 1.67·91-s + 1.42·97-s − 1.97·103-s + 0.574·109-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3/13·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(876096\)    =    \(2^{6} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(55.8606\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 876096,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.587631992\)
\(L(\frac12)\) \(\approx\) \(2.587631992\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
11$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 128 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 56 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.117965845767349000385144246676, −7.916862978599173827885363508038, −7.45124827435846047304532781649, −6.87233367513434423874764469745, −6.32084908146833985179775165536, −5.99510368810614965500153829853, −5.49025366834376216054893233753, −4.98721499661367299522041010263, −4.45761727249049658805622833757, −4.08496261187088214791451424382, −3.59571463463586332183810724353, −2.81067293210197952086372659559, −2.07862773707338337245971139521, −1.65519517675676495026349981393, −0.799092026316408552285567257007, 0.799092026316408552285567257007, 1.65519517675676495026349981393, 2.07862773707338337245971139521, 2.81067293210197952086372659559, 3.59571463463586332183810724353, 4.08496261187088214791451424382, 4.45761727249049658805622833757, 4.98721499661367299522041010263, 5.49025366834376216054893233753, 5.99510368810614965500153829853, 6.32084908146833985179775165536, 6.87233367513434423874764469745, 7.45124827435846047304532781649, 7.916862978599173827885363508038, 8.117965845767349000385144246676

Graph of the $Z$-function along the critical line