L(s) = 1 | + 4·7-s + 4·13-s − 4·19-s − 4·25-s + 2·37-s + 12·43-s + 2·49-s − 8·61-s + 8·67-s + 6·73-s + 8·79-s + 16·91-s + 14·97-s − 20·103-s + 6·109-s + 8·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 1.10·13-s − 0.917·19-s − 4/5·25-s + 0.328·37-s + 1.82·43-s + 2/7·49-s − 1.02·61-s + 0.977·67-s + 0.702·73-s + 0.900·79-s + 1.67·91-s + 1.42·97-s − 1.97·103-s + 0.574·109-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3/13·169-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 876096, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.587631992 |
L(21) |
≈ |
2.587631992 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C2 | 1−4T+pT2 |
good | 5 | C22 | 1+4T2+p2T4 |
| 7 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 11 | C22 | 1−8T2+p2T4 |
| 17 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 19 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 23 | C22 | 1−14T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2×C2 | (1−10T+pT2)(1+8T+pT2) |
| 41 | C22 | 1+52T2+p2T4 |
| 43 | C2×C2 | (1−8T+pT2)(1−4T+pT2) |
| 47 | C22 | 1−80T2+p2T4 |
| 53 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 59 | C22 | 1−8T2+p2T4 |
| 61 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C22 | 1−128T2+p2T4 |
| 73 | C2×C2 | (1−10T+pT2)(1+4T+pT2) |
| 79 | C2×C2 | (1−12T+pT2)(1+4T+pT2) |
| 83 | C22 | 1−56T2+p2T4 |
| 89 | C22 | 1+60T2+p2T4 |
| 97 | C2×C2 | (1−12T+pT2)(1−2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.117965845767349000385144246676, −7.916862978599173827885363508038, −7.45124827435846047304532781649, −6.87233367513434423874764469745, −6.32084908146833985179775165536, −5.99510368810614965500153829853, −5.49025366834376216054893233753, −4.98721499661367299522041010263, −4.45761727249049658805622833757, −4.08496261187088214791451424382, −3.59571463463586332183810724353, −2.81067293210197952086372659559, −2.07862773707338337245971139521, −1.65519517675676495026349981393, −0.799092026316408552285567257007,
0.799092026316408552285567257007, 1.65519517675676495026349981393, 2.07862773707338337245971139521, 2.81067293210197952086372659559, 3.59571463463586332183810724353, 4.08496261187088214791451424382, 4.45761727249049658805622833757, 4.98721499661367299522041010263, 5.49025366834376216054893233753, 5.99510368810614965500153829853, 6.32084908146833985179775165536, 6.87233367513434423874764469745, 7.45124827435846047304532781649, 7.916862978599173827885363508038, 8.117965845767349000385144246676