L(s) = 1 | + 2·2-s + 2·4-s + 6·7-s + 12·14-s − 4·16-s + 14·17-s − 8·23-s + 25-s + 12·28-s − 16·31-s − 8·32-s + 28·34-s − 4·41-s − 16·46-s + 14·47-s + 13·49-s + 2·50-s − 32·62-s − 8·64-s + 28·68-s + 6·71-s + 28·73-s − 20·79-s − 8·82-s − 16·92-s + 28·94-s + 16·97-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 2.26·7-s + 3.20·14-s − 16-s + 3.39·17-s − 1.66·23-s + 1/5·25-s + 2.26·28-s − 2.87·31-s − 1.41·32-s + 4.80·34-s − 0.624·41-s − 2.35·46-s + 2.04·47-s + 13/7·49-s + 0.282·50-s − 4.06·62-s − 64-s + 3.39·68-s + 0.712·71-s + 3.27·73-s − 2.25·79-s − 0.883·82-s − 1.66·92-s + 2.88·94-s + 1.62·97-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 876096, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.207678649 |
L(21) |
≈ |
6.207678649 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | | 1 |
| 13 | C2 | 1+T2 |
good | 5 | C22 | 1−T2+p2T4 |
| 7 | C2 | (1−3T+pT2)2 |
| 11 | C2 | (1−pT2)2 |
| 17 | C2 | (1−7T+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C2 | (1+4T+pT2)2 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C22 | 1−25T2+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1−85T2+p2T4 |
| 47 | C2 | (1−7T+pT2)2 |
| 53 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 59 | C22 | 1+78T2+p2T4 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C22 | 1−130T2+p2T4 |
| 71 | C2 | (1−3T+pT2)2 |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | C22 | 1+30T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54879325857465538070230369061, −9.810929708715935350486376354643, −9.568344033548428929447615449757, −9.002976634679524268556987485372, −8.256892312600616901149994718986, −8.189352302905368400678882268362, −7.74795126446030632420585194532, −7.23009806150085706545676071888, −7.04750305861168250111128132207, −5.90549497669378764643639949139, −5.80182269904285993340750573937, −5.41375683031812336635310272242, −5.12351612177070882626560888552, −4.54168481132733101164581341578, −4.06336662775372832913137138087, −3.45500436521338596356623048772, −3.30337636812120140812732157124, −2.07875543361596919789728301552, −1.91542847886084698137045959320, −1.01251428109686507359472261915,
1.01251428109686507359472261915, 1.91542847886084698137045959320, 2.07875543361596919789728301552, 3.30337636812120140812732157124, 3.45500436521338596356623048772, 4.06336662775372832913137138087, 4.54168481132733101164581341578, 5.12351612177070882626560888552, 5.41375683031812336635310272242, 5.80182269904285993340750573937, 5.90549497669378764643639949139, 7.04750305861168250111128132207, 7.23009806150085706545676071888, 7.74795126446030632420585194532, 8.189352302905368400678882268362, 8.256892312600616901149994718986, 9.002976634679524268556987485372, 9.568344033548428929447615449757, 9.810929708715935350486376354643, 10.54879325857465538070230369061