L(s) = 1 | − 3·3-s − 3·5-s + 6·9-s − 6·11-s − 5·13-s + 9·15-s + 5·17-s + 3·19-s − 8·23-s + 5·25-s − 9·27-s − 18·29-s + 7·31-s + 18·33-s + 5·37-s + 15·39-s − 6·41-s + 8·43-s − 18·45-s + 47-s + 7·49-s − 15·51-s + 20·53-s + 18·55-s − 9·57-s − 18·59-s + 6·61-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 1.34·5-s + 2·9-s − 1.80·11-s − 1.38·13-s + 2.32·15-s + 1.21·17-s + 0.688·19-s − 1.66·23-s + 25-s − 1.73·27-s − 3.34·29-s + 1.25·31-s + 3.13·33-s + 0.821·37-s + 2.40·39-s − 0.937·41-s + 1.21·43-s − 2.68·45-s + 0.145·47-s + 49-s − 2.10·51-s + 2.74·53-s + 2.42·55-s − 1.19·57-s − 2.34·59-s + 0.768·61-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 876096, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT+pT2 |
| 13 | C2 | 1+5T+pT2 |
good | 5 | C22 | 1+3T+4T2+3pT3+p2T4 |
| 7 | C22 | 1−pT2+p2T4 |
| 11 | C2 | (1+3T+pT2)2 |
| 17 | C22 | 1−5T+8T2−5pT3+p2T4 |
| 19 | C22 | 1−3T−10T2−3pT3+p2T4 |
| 23 | C22 | 1+8T+41T2+8pT3+p2T4 |
| 29 | C2 | (1+9T+pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+4T+pT2) |
| 37 | C22 | 1−5T−12T2−5pT3+p2T4 |
| 41 | C22 | 1+6T−5T2+6pT3+p2T4 |
| 43 | C2 | (1−13T+pT2)(1+5T+pT2) |
| 47 | C22 | 1−T−46T2−pT3+p2T4 |
| 53 | C2 | (1−10T+pT2)2 |
| 59 | C2 | (1+9T+pT2)2 |
| 61 | C22 | 1−6T−25T2−6pT3+p2T4 |
| 67 | C22 | 1+12T+77T2+12pT3+p2T4 |
| 71 | C22 | 1+T−70T2+pT3+p2T4 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C22 | 1+11T+42T2+11pT3+p2T4 |
| 83 | C22 | 1+3T−74T2+3pT3+p2T4 |
| 89 | C22 | 1+11T+32T2+11pT3+p2T4 |
| 97 | C2 | (1−5T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21588692221203179500467666783, −9.616774568013260844088834770050, −9.157743022436732513407789051753, −8.434824960489590997617174678118, −7.83452805084155089333762493145, −7.62856631743935795062380073440, −7.30418638627036425691365154569, −7.22625770743461330208687199847, −6.26223092524026538078556517028, −5.63002330909251917615298605546, −5.58050928132307884244095569482, −5.25104962021962065413101676039, −4.38664074109845751692807810484, −4.30958139307583089520083666362, −3.64115797832701012179039388111, −2.86962857196961273102971430762, −2.28803540315174946141778946955, −1.22295559690610853878416816173, 0, 0,
1.22295559690610853878416816173, 2.28803540315174946141778946955, 2.86962857196961273102971430762, 3.64115797832701012179039388111, 4.30958139307583089520083666362, 4.38664074109845751692807810484, 5.25104962021962065413101676039, 5.58050928132307884244095569482, 5.63002330909251917615298605546, 6.26223092524026538078556517028, 7.22625770743461330208687199847, 7.30418638627036425691365154569, 7.62856631743935795062380073440, 7.83452805084155089333762493145, 8.434824960489590997617174678118, 9.157743022436732513407789051753, 9.616774568013260844088834770050, 10.21588692221203179500467666783