Properties

Label 4-936e2-1.1-c1e2-0-41
Degree $4$
Conductor $876096$
Sign $1$
Analytic cond. $55.8606$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 3·5-s + 6·9-s − 6·11-s − 5·13-s + 9·15-s + 5·17-s + 3·19-s − 8·23-s + 5·25-s − 9·27-s − 18·29-s + 7·31-s + 18·33-s + 5·37-s + 15·39-s − 6·41-s + 8·43-s − 18·45-s + 47-s + 7·49-s − 15·51-s + 20·53-s + 18·55-s − 9·57-s − 18·59-s + 6·61-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.34·5-s + 2·9-s − 1.80·11-s − 1.38·13-s + 2.32·15-s + 1.21·17-s + 0.688·19-s − 1.66·23-s + 25-s − 1.73·27-s − 3.34·29-s + 1.25·31-s + 3.13·33-s + 0.821·37-s + 2.40·39-s − 0.937·41-s + 1.21·43-s − 2.68·45-s + 0.145·47-s + 49-s − 2.10·51-s + 2.74·53-s + 2.42·55-s − 1.19·57-s − 2.34·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(876096\)    =    \(2^{6} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(55.8606\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 876096,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
13$C_2$ \( 1 + 5 T + p T^{2} \)
good5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 5 T + 8 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 3 T - 10 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 8 T + 41 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 5 T - 12 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - T - 46 T^{2} - p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 6 T - 25 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 12 T + 77 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + T - 70 T^{2} + p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 11 T + 42 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 3 T - 74 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 11 T + 32 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21588692221203179500467666783, −9.616774568013260844088834770050, −9.157743022436732513407789051753, −8.434824960489590997617174678118, −7.83452805084155089333762493145, −7.62856631743935795062380073440, −7.30418638627036425691365154569, −7.22625770743461330208687199847, −6.26223092524026538078556517028, −5.63002330909251917615298605546, −5.58050928132307884244095569482, −5.25104962021962065413101676039, −4.38664074109845751692807810484, −4.30958139307583089520083666362, −3.64115797832701012179039388111, −2.86962857196961273102971430762, −2.28803540315174946141778946955, −1.22295559690610853878416816173, 0, 0, 1.22295559690610853878416816173, 2.28803540315174946141778946955, 2.86962857196961273102971430762, 3.64115797832701012179039388111, 4.30958139307583089520083666362, 4.38664074109845751692807810484, 5.25104962021962065413101676039, 5.58050928132307884244095569482, 5.63002330909251917615298605546, 6.26223092524026538078556517028, 7.22625770743461330208687199847, 7.30418638627036425691365154569, 7.62856631743935795062380073440, 7.83452805084155089333762493145, 8.434824960489590997617174678118, 9.157743022436732513407789051753, 9.616774568013260844088834770050, 10.21588692221203179500467666783

Graph of the $Z$-function along the critical line