L(s) = 1 | + 2·5-s − 2·7-s + 8·13-s + 10·17-s + 2·19-s − 8·23-s − 4·25-s − 2·29-s − 4·35-s − 8·37-s + 16·41-s − 4·43-s − 6·47-s + 3·49-s + 6·53-s + 16·59-s + 16·61-s + 16·65-s − 8·67-s − 2·71-s + 8·73-s − 4·79-s + 10·83-s + 20·85-s − 16·91-s + 4·95-s + 12·97-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.755·7-s + 2.21·13-s + 2.42·17-s + 0.458·19-s − 1.66·23-s − 4/5·25-s − 0.371·29-s − 0.676·35-s − 1.31·37-s + 2.49·41-s − 0.609·43-s − 0.875·47-s + 3/7·49-s + 0.824·53-s + 2.08·59-s + 2.04·61-s + 1.98·65-s − 0.977·67-s − 0.237·71-s + 0.936·73-s − 0.450·79-s + 1.09·83-s + 2.16·85-s − 1.67·91-s + 0.410·95-s + 1.21·97-s + ⋯ |
Λ(s)=(=(91699776s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(91699776s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
91699776
= 26⋅34⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
5846.85 |
Root analytic conductor: |
8.74441 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 91699776, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.853021497 |
L(21) |
≈ |
4.853021497 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1+T)2 |
| 19 | C1 | (1−T)2 |
good | 5 | D4 | 1−2T+8T2−2pT3+p2T4 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | D4 | 1−10T+56T2−10pT3+p2T4 |
| 23 | D4 | 1+8T+50T2+8pT3+p2T4 |
| 29 | D4 | 1+2T+56T2+2pT3+p2T4 |
| 31 | C22 | 1+50T2+p2T4 |
| 37 | D4 | 1+8T+78T2+8pT3+p2T4 |
| 41 | D4 | 1−16T+134T2−16pT3+p2T4 |
| 43 | D4 | 1+4T+42T2+4pT3+p2T4 |
| 47 | D4 | 1+6T+28T2+6pT3+p2T4 |
| 53 | D4 | 1−6T+88T2−6pT3+p2T4 |
| 59 | C2 | (1−8T+pT2)2 |
| 61 | D4 | 1−16T+174T2−16pT3+p2T4 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | D4 | 1+2T+116T2+2pT3+p2T4 |
| 73 | D4 | 1−8T+150T2−8pT3+p2T4 |
| 79 | D4 | 1+4T+150T2+4pT3+p2T4 |
| 83 | D4 | 1−10T+164T2−10pT3+p2T4 |
| 89 | C22 | 1+70T2+p2T4 |
| 97 | C2 | (1−6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.82508858757232868766556216147, −7.48966471687452736005384545564, −7.30300186993056739819950634438, −6.72033452185198052128553924444, −6.28104305201082942431105533896, −6.16354047907991182134082748996, −5.78211797709902953350540770050, −5.69475418493493397485105148642, −5.15437858554929948956192632811, −5.06474179561794531607418513894, −3.97313550308581969774860911952, −3.96967273762296694840005577259, −3.55399166021064744249868098288, −3.55163173685440234926923557660, −2.68504311789875791285292515414, −2.53939371161969454489779208379, −1.71977579391393835244646285291, −1.62569836511552949477421568566, −0.950352055993476671989546866435, −0.57458679088412248307946885761,
0.57458679088412248307946885761, 0.950352055993476671989546866435, 1.62569836511552949477421568566, 1.71977579391393835244646285291, 2.53939371161969454489779208379, 2.68504311789875791285292515414, 3.55163173685440234926923557660, 3.55399166021064744249868098288, 3.96967273762296694840005577259, 3.97313550308581969774860911952, 5.06474179561794531607418513894, 5.15437858554929948956192632811, 5.69475418493493397485105148642, 5.78211797709902953350540770050, 6.16354047907991182134082748996, 6.28104305201082942431105533896, 6.72033452185198052128553924444, 7.30300186993056739819950634438, 7.48966471687452736005384545564, 7.82508858757232868766556216147