L(s) = 1 | + 4·5-s − 9-s + 4·11-s + 11·25-s + 16·31-s + 4·41-s − 4·45-s + 10·49-s + 16·55-s − 20·59-s − 4·61-s − 24·71-s + 81-s + 20·89-s − 4·99-s + 16·101-s + 20·109-s − 10·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 64·155-s + 157-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 1/3·9-s + 1.20·11-s + 11/5·25-s + 2.87·31-s + 0.624·41-s − 0.596·45-s + 10/7·49-s + 2.15·55-s − 2.60·59-s − 0.512·61-s − 2.84·71-s + 1/9·81-s + 2.11·89-s − 0.402·99-s + 1.59·101-s + 1.91·109-s − 0.909·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 5.14·155-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(921600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(921600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
921600
= 212⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
58.7620 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 921600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.521563073 |
L(21) |
≈ |
3.521563073 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−4T+pT2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1+10T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18364502159992335238648205135, −9.833776562646347466676882747811, −9.384064569249551478990180713425, −8.971978897568705580423844699306, −8.826894411114671847087748345650, −8.322158042952626455600158208771, −7.55950415037675494715112703776, −7.37690217813721676929007350833, −6.54196454830521372494982997938, −6.26610215086726361520580870028, −6.12787929568860191645301468827, −5.66263154031096757822641733587, −4.87625642194862086874035110455, −4.67011774542556332856712106536, −4.08235065221894392875316020330, −3.24016238096554676569682538509, −2.79037509052512667748577503659, −2.25673511107964657709754938345, −1.50590960483716422198531697519, −0.975660376270329757854206180532,
0.975660376270329757854206180532, 1.50590960483716422198531697519, 2.25673511107964657709754938345, 2.79037509052512667748577503659, 3.24016238096554676569682538509, 4.08235065221894392875316020330, 4.67011774542556332856712106536, 4.87625642194862086874035110455, 5.66263154031096757822641733587, 6.12787929568860191645301468827, 6.26610215086726361520580870028, 6.54196454830521372494982997938, 7.37690217813721676929007350833, 7.55950415037675494715112703776, 8.322158042952626455600158208771, 8.826894411114671847087748345650, 8.971978897568705580423844699306, 9.384064569249551478990180713425, 9.833776562646347466676882747811, 10.18364502159992335238648205135