L(s) = 1 | − 2·2-s + 3·4-s − 2·5-s − 4·8-s + 4·10-s + 2·11-s + 5·16-s − 6·17-s + 2·19-s − 6·20-s − 4·22-s − 4·23-s − 2·25-s + 10·31-s − 6·32-s + 12·34-s − 4·37-s − 4·38-s + 8·40-s − 6·41-s + 4·43-s + 6·44-s + 8·46-s − 6·47-s + 4·50-s + 12·53-s − 4·55-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 0.894·5-s − 1.41·8-s + 1.26·10-s + 0.603·11-s + 5/4·16-s − 1.45·17-s + 0.458·19-s − 1.34·20-s − 0.852·22-s − 0.834·23-s − 2/5·25-s + 1.79·31-s − 1.06·32-s + 2.05·34-s − 0.657·37-s − 0.648·38-s + 1.26·40-s − 0.937·41-s + 0.609·43-s + 0.904·44-s + 1.17·46-s − 0.875·47-s + 0.565·50-s + 1.64·53-s − 0.539·55-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8638913744 |
L(21) |
≈ |
0.8638913744 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1−T)2 |
good | 5 | D4 | 1+2T+6T2+2pT3+p2T4 |
| 13 | C2 | (1+pT2)2 |
| 17 | D4 | 1+6T+38T2+6pT3+p2T4 |
| 19 | C4 | 1−2T−6T2−2pT3+p2T4 |
| 23 | D4 | 1+4T+30T2+4pT3+p2T4 |
| 29 | C22 | 1+38T2+p2T4 |
| 31 | D4 | 1−10T+82T2−10pT3+p2T4 |
| 37 | D4 | 1+4T−2T2+4pT3+p2T4 |
| 41 | D4 | 1+6T+86T2+6pT3+p2T4 |
| 43 | D4 | 1−4T+70T2−4pT3+p2T4 |
| 47 | D4 | 1+6T+58T2+6pT3+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | D4 | 1+12T+134T2+12pT3+p2T4 |
| 61 | C2 | (1+pT2)2 |
| 67 | D4 | 1−4T−42T2−4pT3+p2T4 |
| 71 | C4 | 1+4T+126T2+4pT3+p2T4 |
| 73 | D4 | 1−18T+182T2−18pT3+p2T4 |
| 79 | D4 | 1+4T−18T2+4pT3+p2T4 |
| 83 | D4 | 1+2T+162T2+2pT3+p2T4 |
| 89 | D4 | 1+4T+162T2+4pT3+p2T4 |
| 97 | C2 | (1+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84765487368768860769242742653, −7.71992016479634089860880991159, −7.15020599873679668348541086871, −6.90951080462553017174952159381, −6.62506979527121883220720456246, −6.43818126420135066311204821204, −5.93481120913551524054522139116, −5.54100819292567442174291173581, −5.23341744295641218995391737590, −4.51043541353326318563307519364, −4.35898993130214179007988660286, −4.07505504720581808236900605838, −3.37851601074741963049161761425, −3.32548423912170175310326166844, −2.59968979450742003780057019075, −2.37519692820945728285819048018, −1.69048504214662511733193828091, −1.54866508644472456882636244626, −0.67258874766466695522463288606, −0.39589012665285907675282373958,
0.39589012665285907675282373958, 0.67258874766466695522463288606, 1.54866508644472456882636244626, 1.69048504214662511733193828091, 2.37519692820945728285819048018, 2.59968979450742003780057019075, 3.32548423912170175310326166844, 3.37851601074741963049161761425, 4.07505504720581808236900605838, 4.35898993130214179007988660286, 4.51043541353326318563307519364, 5.23341744295641218995391737590, 5.54100819292567442174291173581, 5.93481120913551524054522139116, 6.43818126420135066311204821204, 6.62506979527121883220720456246, 6.90951080462553017174952159381, 7.15020599873679668348541086871, 7.71992016479634089860880991159, 7.84765487368768860769242742653