L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s − 2·11-s + 5·16-s − 4·22-s − 2·25-s − 16·29-s + 6·32-s + 12·37-s + 8·43-s − 6·44-s − 4·50-s + 12·53-s − 32·58-s + 7·64-s − 8·67-s + 12·71-s + 24·74-s + 24·79-s + 16·86-s − 8·88-s − 6·100-s + 24·106-s − 12·107-s − 32·109-s − 28·113-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s − 0.603·11-s + 5/4·16-s − 0.852·22-s − 2/5·25-s − 2.97·29-s + 1.06·32-s + 1.97·37-s + 1.21·43-s − 0.904·44-s − 0.565·50-s + 1.64·53-s − 4.20·58-s + 7/8·64-s − 0.977·67-s + 1.42·71-s + 2.78·74-s + 2.70·79-s + 1.72·86-s − 0.852·88-s − 3/5·100-s + 2.33·106-s − 1.16·107-s − 3.06·109-s − 2.63·113-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.308189264 |
L(21) |
≈ |
6.308189264 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1+T)2 |
good | 5 | C22 | 1+2T2+p2T4 |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C22 | 1−12T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+8T+pT2)2 |
| 31 | C22 | 1+60T2+p2T4 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1+44T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1+110T2+p2T4 |
| 61 | C22 | 1−40T2+p2T4 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C22 | 1+74T2+p2T4 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | C22 | 1+116T2+p2T4 |
| 89 | C22 | 1−64T2+p2T4 |
| 97 | C22 | 1+144T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.66581865878770086169520803952, −7.63362238073388942311955634834, −6.95409904947504520728113796786, −6.85653956103152510656696446210, −6.42388691104461960719565088928, −5.98614230469501452683895281319, −5.66037853163319986170706656983, −5.47713587041485881194559351213, −5.21461651676620261229250353823, −4.77714695405700510053804500914, −4.15724220995996450773411233157, −4.08799813158337190460095803665, −3.78623316392103469254275447438, −3.35297812324539984375493290858, −2.77528852017348765490566550807, −2.51814241954628856815631525932, −2.15208711338571205856404965829, −1.71261883885942142666576884402, −1.09588561555603425131919303949, −0.43077324012781284684716596598,
0.43077324012781284684716596598, 1.09588561555603425131919303949, 1.71261883885942142666576884402, 2.15208711338571205856404965829, 2.51814241954628856815631525932, 2.77528852017348765490566550807, 3.35297812324539984375493290858, 3.78623316392103469254275447438, 4.08799813158337190460095803665, 4.15724220995996450773411233157, 4.77714695405700510053804500914, 5.21461651676620261229250353823, 5.47713587041485881194559351213, 5.66037853163319986170706656983, 5.98614230469501452683895281319, 6.42388691104461960719565088928, 6.85653956103152510656696446210, 6.95409904947504520728113796786, 7.63362238073388942311955634834, 7.66581865878770086169520803952