L(s) = 1 | + 2·2-s + 3·4-s + 2·5-s + 4·8-s + 4·10-s + 2·11-s − 8·13-s + 5·16-s − 10·17-s − 4·19-s + 6·20-s + 4·22-s + 2·23-s − 5·25-s − 16·26-s + 4·31-s + 6·32-s − 20·34-s + 8·37-s − 8·38-s + 8·40-s − 2·41-s + 6·44-s + 4·46-s − 10·47-s − 10·50-s − 24·52-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.894·5-s + 1.41·8-s + 1.26·10-s + 0.603·11-s − 2.21·13-s + 5/4·16-s − 2.42·17-s − 0.917·19-s + 1.34·20-s + 0.852·22-s + 0.417·23-s − 25-s − 3.13·26-s + 0.718·31-s + 1.06·32-s − 3.42·34-s + 1.31·37-s − 1.29·38-s + 1.26·40-s − 0.312·41-s + 0.904·44-s + 0.589·46-s − 1.45·47-s − 1.41·50-s − 3.32·52-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1−T)2 |
good | 5 | D4 | 1−2T+9T2−2pT3+p2T4 |
| 13 | D4 | 1+8T+34T2+8pT3+p2T4 |
| 17 | D4 | 1+10T+3pT2+10pT3+p2T4 |
| 19 | D4 | 1+4T+34T2+4pT3+p2T4 |
| 23 | D4 | 1−2T+29T2−2pT3+p2T4 |
| 29 | C22 | 1+50T2+p2T4 |
| 31 | C4 | 1−4T−6T2−4pT3+p2T4 |
| 37 | D4 | 1−8T+58T2−8pT3+p2T4 |
| 41 | D4 | 1+2T+51T2+2pT3+p2T4 |
| 43 | C22 | 1+78T2+p2T4 |
| 47 | D4 | 1+10T+101T2+10pT3+p2T4 |
| 53 | D4 | 1+16T+162T2+16pT3+p2T4 |
| 59 | D4 | 1−4T+90T2−4pT3+p2T4 |
| 61 | D4 | 1+6T+129T2+6pT3+p2T4 |
| 67 | D4 | 1+10T+87T2+10pT3+p2T4 |
| 71 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 73 | D4 | 1+4T+142T2+4pT3+p2T4 |
| 79 | D4 | 1−18T+221T2−18pT3+p2T4 |
| 83 | D4 | 1+14T+207T2+14pT3+p2T4 |
| 89 | D4 | 1−8T+122T2−8pT3+p2T4 |
| 97 | D4 | 1+26T+355T2+26pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.32999472949357098542493411408, −6.93914546361762739765234555412, −6.66783281430768160092629832549, −6.48248190684088067162223539998, −6.03380219116260970618320059631, −6.02072372443107454468346866447, −5.23177298879784910581648850926, −5.04873968736802034067633114709, −4.76325978676030346993989445654, −4.46621911429606557408742049254, −4.00648231924344030377544372363, −3.94628670646552474249604495882, −3.11034096175556012318085943646, −2.72589083661860230681705531101, −2.39925681400888753539627544740, −2.29112392372240368614616774625, −1.58788065413354132868664297900, −1.43008990398391180455392037500, 0, 0,
1.43008990398391180455392037500, 1.58788065413354132868664297900, 2.29112392372240368614616774625, 2.39925681400888753539627544740, 2.72589083661860230681705531101, 3.11034096175556012318085943646, 3.94628670646552474249604495882, 4.00648231924344030377544372363, 4.46621911429606557408742049254, 4.76325978676030346993989445654, 5.04873968736802034067633114709, 5.23177298879784910581648850926, 6.02072372443107454468346866447, 6.03380219116260970618320059631, 6.48248190684088067162223539998, 6.66783281430768160092629832549, 6.93914546361762739765234555412, 7.32999472949357098542493411408