Properties

Label 4-975e2-1.1-c0e2-0-1
Degree $4$
Conductor $950625$
Sign $1$
Analytic cond. $0.236768$
Root an. cond. $0.697558$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4-s − 7-s − 12-s − 2·13-s + 19-s − 21-s − 27-s + 28-s + 4·31-s + 2·37-s − 2·39-s − 43-s + 49-s + 2·52-s + 57-s − 2·61-s + 64-s − 67-s + 2·73-s − 76-s − 2·79-s − 81-s + 84-s + 2·91-s + 4·93-s + 2·97-s + ⋯
L(s)  = 1  + 3-s − 4-s − 7-s − 12-s − 2·13-s + 19-s − 21-s − 27-s + 28-s + 4·31-s + 2·37-s − 2·39-s − 43-s + 49-s + 2·52-s + 57-s − 2·61-s + 64-s − 67-s + 2·73-s − 76-s − 2·79-s − 81-s + 84-s + 2·91-s + 4·93-s + 2·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(950625\)    =    \(3^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.236768\)
Root analytic conductor: \(0.697558\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 950625,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7795786764\)
\(L(\frac12)\) \(\approx\) \(0.7795786764\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + T^{2} \)
5 \( 1 \)
13$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$ \( ( 1 - T )^{4} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14481120059794087714542727938, −9.852246864281772762571094234387, −9.610824892434926778972806506377, −9.184768914145084891096575728697, −8.926594045490684485566430927972, −8.223345515667233378018295425003, −8.143038880934048142478579951979, −7.41785223496469855228093816686, −7.37145874042251345594491716672, −6.54631896126174916189396117275, −6.20060069090052131309275776188, −5.73813529112427156566665246733, −4.92930580491230472922330850948, −4.57442467153360372299369917498, −4.46368752189094048442954809538, −3.51420551010126304392432655651, −3.04054851144198347176414363508, −2.70408263627851848195748200723, −2.19207251486768035259803088450, −0.813275479504411650719544841679, 0.813275479504411650719544841679, 2.19207251486768035259803088450, 2.70408263627851848195748200723, 3.04054851144198347176414363508, 3.51420551010126304392432655651, 4.46368752189094048442954809538, 4.57442467153360372299369917498, 4.92930580491230472922330850948, 5.73813529112427156566665246733, 6.20060069090052131309275776188, 6.54631896126174916189396117275, 7.37145874042251345594491716672, 7.41785223496469855228093816686, 8.143038880934048142478579951979, 8.223345515667233378018295425003, 8.926594045490684485566430927972, 9.184768914145084891096575728697, 9.610824892434926778972806506377, 9.852246864281772762571094234387, 10.14481120059794087714542727938

Graph of the $Z$-function along the critical line