L(s) = 1 | + 3-s − 4-s − 7-s − 12-s − 2·13-s + 19-s − 21-s − 27-s + 28-s + 4·31-s + 2·37-s − 2·39-s − 43-s + 49-s + 2·52-s + 57-s − 2·61-s + 64-s − 67-s + 2·73-s − 76-s − 2·79-s − 81-s + 84-s + 2·91-s + 4·93-s + 2·97-s + ⋯ |
L(s) = 1 | + 3-s − 4-s − 7-s − 12-s − 2·13-s + 19-s − 21-s − 27-s + 28-s + 4·31-s + 2·37-s − 2·39-s − 43-s + 49-s + 2·52-s + 57-s − 2·61-s + 64-s − 67-s + 2·73-s − 76-s − 2·79-s − 81-s + 84-s + 2·91-s + 4·93-s + 2·97-s + ⋯ |
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
950625
= 32⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
0.236768 |
Root analytic conductor: |
0.697558 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 950625, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.7795786764 |
L(21) |
≈ |
0.7795786764 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1−T+T2 |
| 5 | | 1 |
| 13 | C1 | (1+T)2 |
good | 2 | C2 | (1−T+T2)(1+T+T2) |
| 7 | C1×C2 | (1+T)2(1−T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C1×C2 | (1−T)2(1+T+T2) |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C1 | (1−T)4 |
| 37 | C2 | (1−T+T2)2 |
| 41 | C2 | (1−T+T2)(1+T+T2) |
| 43 | C1×C2 | (1+T)2(1−T+T2) |
| 47 | C1×C1 | (1−T)2(1+T)2 |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C2 | (1+T+T2)2 |
| 67 | C1×C2 | (1+T)2(1−T+T2) |
| 71 | C2 | (1−T+T2)(1+T+T2) |
| 73 | C2 | (1−T+T2)2 |
| 79 | C2 | (1+T+T2)2 |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1−T+T2)(1+T+T2) |
| 97 | C2 | (1−T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14481120059794087714542727938, −9.852246864281772762571094234387, −9.610824892434926778972806506377, −9.184768914145084891096575728697, −8.926594045490684485566430927972, −8.223345515667233378018295425003, −8.143038880934048142478579951979, −7.41785223496469855228093816686, −7.37145874042251345594491716672, −6.54631896126174916189396117275, −6.20060069090052131309275776188, −5.73813529112427156566665246733, −4.92930580491230472922330850948, −4.57442467153360372299369917498, −4.46368752189094048442954809538, −3.51420551010126304392432655651, −3.04054851144198347176414363508, −2.70408263627851848195748200723, −2.19207251486768035259803088450, −0.813275479504411650719544841679,
0.813275479504411650719544841679, 2.19207251486768035259803088450, 2.70408263627851848195748200723, 3.04054851144198347176414363508, 3.51420551010126304392432655651, 4.46368752189094048442954809538, 4.57442467153360372299369917498, 4.92930580491230472922330850948, 5.73813529112427156566665246733, 6.20060069090052131309275776188, 6.54631896126174916189396117275, 7.37145874042251345594491716672, 7.41785223496469855228093816686, 8.143038880934048142478579951979, 8.223345515667233378018295425003, 8.926594045490684485566430927972, 9.184768914145084891096575728697, 9.610824892434926778972806506377, 9.852246864281772762571094234387, 10.14481120059794087714542727938