Properties

Label 4-975e2-1.1-c0e2-0-4
Degree $4$
Conductor $950625$
Sign $1$
Analytic cond. $0.236768$
Root an. cond. $0.697558$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 9-s + 3·16-s − 2·36-s − 2·49-s − 4·61-s + 4·64-s + 4·79-s + 81-s − 2·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 4·196-s + ⋯
L(s)  = 1  + 2·4-s − 9-s + 3·16-s − 2·36-s − 2·49-s − 4·61-s + 4·64-s + 4·79-s + 81-s − 2·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 4·196-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(950625\)    =    \(3^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.236768\)
Root analytic conductor: \(0.697558\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 950625,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.490131892\)
\(L(\frac12)\) \(\approx\) \(1.490131892\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 + T^{2} \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$ \( ( 1 + T )^{4} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$ \( ( 1 - T )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46020180672746986598322320198, −10.25459188500847120213976126290, −9.600924897993804394861135573876, −9.145070378795872887496922649413, −8.841380063270587955574540273338, −7.937506276045764260070505889456, −7.87464050505085899264970070378, −7.71768273400817361388107516167, −6.87859619786778195954961749199, −6.59237856878386894559391487066, −6.08149711375738883685380744832, −6.07656575759035098726143849334, −5.13072896459162593903227548049, −5.06959454151953004867126607954, −4.07246558130023193839670554749, −3.35201431561297263149031426010, −3.11187708242688814260298900724, −2.53427834112161155281039054535, −1.96214344693111957840067107755, −1.32628486048628880277635760772, 1.32628486048628880277635760772, 1.96214344693111957840067107755, 2.53427834112161155281039054535, 3.11187708242688814260298900724, 3.35201431561297263149031426010, 4.07246558130023193839670554749, 5.06959454151953004867126607954, 5.13072896459162593903227548049, 6.07656575759035098726143849334, 6.08149711375738883685380744832, 6.59237856878386894559391487066, 6.87859619786778195954961749199, 7.71768273400817361388107516167, 7.87464050505085899264970070378, 7.937506276045764260070505889456, 8.841380063270587955574540273338, 9.145070378795872887496922649413, 9.600924897993804394861135573876, 10.25459188500847120213976126290, 10.46020180672746986598322320198

Graph of the $Z$-function along the critical line