L(s) = 1 | + 2·4-s − 9-s + 3·16-s − 2·36-s − 2·49-s − 4·61-s + 4·64-s + 4·79-s + 81-s − 2·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 4·196-s + ⋯ |
L(s) = 1 | + 2·4-s − 9-s + 3·16-s − 2·36-s − 2·49-s − 4·61-s + 4·64-s + 4·79-s + 81-s − 2·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 4·196-s + ⋯ |
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
950625
= 32⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
0.236768 |
Root analytic conductor: |
0.697558 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 950625, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.490131892 |
L(21) |
≈ |
1.490131892 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+T2 |
| 5 | | 1 |
| 13 | C2 | 1+T2 |
good | 2 | C1×C1 | (1−T)2(1+T)2 |
| 7 | C2 | (1+T2)2 |
| 11 | C2 | (1+T2)2 |
| 17 | C2 | (1+T2)2 |
| 19 | C1×C1 | (1−T)2(1+T)2 |
| 23 | C2 | (1+T2)2 |
| 29 | C1×C1 | (1−T)2(1+T)2 |
| 31 | C1×C1 | (1−T)2(1+T)2 |
| 37 | C2 | (1+T2)2 |
| 41 | C2 | (1+T2)2 |
| 43 | C2 | (1+T2)2 |
| 47 | C1×C1 | (1−T)2(1+T)2 |
| 53 | C2 | (1+T2)2 |
| 59 | C2 | (1+T2)2 |
| 61 | C1 | (1+T)4 |
| 67 | C2 | (1+T2)2 |
| 71 | C2 | (1+T2)2 |
| 73 | C2 | (1+T2)2 |
| 79 | C1 | (1−T)4 |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1+T2)2 |
| 97 | C2 | (1+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46020180672746986598322320198, −10.25459188500847120213976126290, −9.600924897993804394861135573876, −9.145070378795872887496922649413, −8.841380063270587955574540273338, −7.937506276045764260070505889456, −7.87464050505085899264970070378, −7.71768273400817361388107516167, −6.87859619786778195954961749199, −6.59237856878386894559391487066, −6.08149711375738883685380744832, −6.07656575759035098726143849334, −5.13072896459162593903227548049, −5.06959454151953004867126607954, −4.07246558130023193839670554749, −3.35201431561297263149031426010, −3.11187708242688814260298900724, −2.53427834112161155281039054535, −1.96214344693111957840067107755, −1.32628486048628880277635760772,
1.32628486048628880277635760772, 1.96214344693111957840067107755, 2.53427834112161155281039054535, 3.11187708242688814260298900724, 3.35201431561297263149031426010, 4.07246558130023193839670554749, 5.06959454151953004867126607954, 5.13072896459162593903227548049, 6.07656575759035098726143849334, 6.08149711375738883685380744832, 6.59237856878386894559391487066, 6.87859619786778195954961749199, 7.71768273400817361388107516167, 7.87464050505085899264970070378, 7.937506276045764260070505889456, 8.841380063270587955574540273338, 9.145070378795872887496922649413, 9.600924897993804394861135573876, 10.25459188500847120213976126290, 10.46020180672746986598322320198