L(s) = 1 | + 2·3-s + 3·9-s − 2·13-s − 16-s + 4·27-s − 4·39-s − 2·48-s + 2·49-s + 5·81-s − 6·117-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2·3-s + 3·9-s − 2·13-s − 16-s + 4·27-s − 4·39-s − 2·48-s + 2·49-s + 5·81-s − 6·117-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
950625
= 32⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
0.236768 |
Root analytic conductor: |
0.697558 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 950625, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.848377800 |
L(21) |
≈ |
1.848377800 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17934329951944876245294953206, −9.973438318531000944450321310781, −9.445482340411059171270096194668, −9.083492567683835646843068218470, −8.915114406647258837726466396188, −8.407566945802334014804710733946, −7.82001538497289228716159363266, −7.58543290177525607492175639340, −7.24588872077008628092812186312, −6.80616561924932108697696819786, −6.44021501339372778440570961299, −5.57818974090550141849119573935, −4.84824727925279207794426501916, −4.77124347468273750850239592743, −3.98677422463913272559462774347, −3.77565726747821271093854660763, −2.90525958001038370072008469250, −2.43833327113116172909390124467, −2.30666693957681143269879376228, −1.37193100007792083659560202861,
1.37193100007792083659560202861, 2.30666693957681143269879376228, 2.43833327113116172909390124467, 2.90525958001038370072008469250, 3.77565726747821271093854660763, 3.98677422463913272559462774347, 4.77124347468273750850239592743, 4.84824727925279207794426501916, 5.57818974090550141849119573935, 6.44021501339372778440570961299, 6.80616561924932108697696819786, 7.24588872077008628092812186312, 7.58543290177525607492175639340, 7.82001538497289228716159363266, 8.407566945802334014804710733946, 8.915114406647258837726466396188, 9.083492567683835646843068218470, 9.445482340411059171270096194668, 9.973438318531000944450321310781, 10.17934329951944876245294953206