L(s) = 1 | − 3-s − 4·4-s + 8·7-s − 2·9-s + 4·12-s − 2·13-s + 12·16-s − 8·19-s − 8·21-s + 5·27-s − 32·28-s − 8·31-s + 8·36-s − 4·37-s + 2·39-s + 14·43-s − 12·48-s + 34·49-s + 8·52-s + 8·57-s − 2·61-s − 16·63-s − 32·64-s − 28·67-s + 8·73-s + 32·76-s + 22·79-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 2·4-s + 3.02·7-s − 2/3·9-s + 1.15·12-s − 0.554·13-s + 3·16-s − 1.83·19-s − 1.74·21-s + 0.962·27-s − 6.04·28-s − 1.43·31-s + 4/3·36-s − 0.657·37-s + 0.320·39-s + 2.13·43-s − 1.73·48-s + 34/7·49-s + 1.10·52-s + 1.05·57-s − 0.256·61-s − 2.01·63-s − 4·64-s − 3.42·67-s + 0.936·73-s + 3.67·76-s + 2.47·79-s + ⋯ |
Λ(s)=(=(950625s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(950625s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
950625
= 32⋅54⋅132
|
Sign: |
−1
|
Analytic conductor: |
60.6126 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 950625, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+T+pT2 |
| 5 | | 1 |
| 13 | C1 | (1+T)2 |
good | 2 | C2 | (1+pT2)2 |
| 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 29 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−7T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1+T+pT2)2 |
| 67 | C2 | (1+14T+pT2)2 |
| 71 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 73 | C2 | (1−4T+pT2)2 |
| 79 | C2 | (1−11T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.109622323430795384540902637182, −7.58470653085664427086815596244, −7.44313533967700149106082663018, −6.43995160346575362242193439929, −5.84441229372916213818129575211, −5.50324850311908281715674980863, −5.07836611320697081751291448911, −4.79815352058635420780275090547, −4.33348131529579942321198409567, −4.15253391774556813403352263543, −3.35745100328651024034839394504, −2.32784842593438550687981568602, −1.76397611793551290887183908518, −0.989438760515621806827446532171, 0,
0.989438760515621806827446532171, 1.76397611793551290887183908518, 2.32784842593438550687981568602, 3.35745100328651024034839394504, 4.15253391774556813403352263543, 4.33348131529579942321198409567, 4.79815352058635420780275090547, 5.07836611320697081751291448911, 5.50324850311908281715674980863, 5.84441229372916213818129575211, 6.43995160346575362242193439929, 7.44313533967700149106082663018, 7.58470653085664427086815596244, 8.109622323430795384540902637182