L(s) = 1 | + 2-s + 2·3-s − 4-s − 4·5-s + 2·6-s + 4·7-s − 3·8-s + 3·9-s − 4·10-s − 2·11-s − 2·12-s + 6·13-s + 4·14-s − 8·15-s − 16-s − 8·17-s + 3·18-s − 19-s + 4·20-s + 8·21-s − 2·22-s − 2·23-s − 6·24-s + 2·25-s + 6·26-s + 4·27-s − 4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s − 1/2·4-s − 1.78·5-s + 0.816·6-s + 1.51·7-s − 1.06·8-s + 9-s − 1.26·10-s − 0.603·11-s − 0.577·12-s + 1.66·13-s + 1.06·14-s − 2.06·15-s − 1/4·16-s − 1.94·17-s + 0.707·18-s − 0.229·19-s + 0.894·20-s + 1.74·21-s − 0.426·22-s − 0.417·23-s − 1.22·24-s + 2/5·25-s + 1.17·26-s + 0.769·27-s − 0.755·28-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 987696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.284280023 |
L(21) |
≈ |
2.284280023 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | C1 | (1−T)2 |
| 19 | C1 | 1+T |
good | 5 | C2 | (1+2T+pT2)2 |
| 7 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 11 | C2×C2 | (1+pT2)(1+2T+pT2) |
| 13 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 17 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−4T+pT2)(1+6T+pT2) |
| 29 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 31 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 37 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2×C2 | (1−12T+pT2)(1+6T+pT2) |
| 53 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 67 | C2×C2 | (1+4T+pT2)(1+16T+pT2) |
| 71 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 83 | C2×C2 | (1−16T+pT2)(1−10T+pT2) |
| 89 | C2×C2 | (1−18T+pT2)(1+2T+pT2) |
| 97 | C2×C2 | (1−12T+pT2)(1−10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.0798744008, −11.8739105144, −11.4085208449, −10.9289324032, −10.8415561337, −10.3317571499, −9.61000687688, −9.03211663271, −8.83746811854, −8.37436816344, −8.26351343286, −7.75989478086, −7.59950272568, −6.81360604684, −6.46787589567, −5.79402677262, −5.20430853708, −4.56991321081, −4.48660686111, −3.95264542154, −3.44365518363, −3.34310416861, −2.12198251427, −1.91788623711, −0.578917493177,
0.578917493177, 1.91788623711, 2.12198251427, 3.34310416861, 3.44365518363, 3.95264542154, 4.48660686111, 4.56991321081, 5.20430853708, 5.79402677262, 6.46787589567, 6.81360604684, 7.59950272568, 7.75989478086, 8.26351343286, 8.37436816344, 8.83746811854, 9.03211663271, 9.61000687688, 10.3317571499, 10.8415561337, 10.9289324032, 11.4085208449, 11.8739105144, 12.0798744008