L(s) = 1 | + 3-s + 2·4-s + 3·7-s + 9-s + 2·12-s − 3·13-s + 16-s − 19-s + 3·21-s − 25-s + 6·28-s + 2·31-s + 2·36-s − 2·37-s − 3·39-s + 9·43-s + 48-s + 4·49-s − 6·52-s − 57-s + 3·61-s + 3·63-s − 2·67-s − 73-s − 75-s − 2·76-s + 79-s + ⋯ |
L(s) = 1 | + 3-s + 2·4-s + 3·7-s + 9-s + 2·12-s − 3·13-s + 16-s − 19-s + 3·21-s − 25-s + 6·28-s + 2·31-s + 2·36-s − 2·37-s − 3·39-s + 9·43-s + 48-s + 4·49-s − 6·52-s − 57-s + 3·61-s + 3·63-s − 2·67-s − 73-s − 75-s − 2·76-s + 79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 397^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 397^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.470383805\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.470383805\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} \) |
| 397 | \( ( 1 - T )^{20} \) |
good | 2 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \) |
| 5 | \( 1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40} \) |
| 7 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \) |
| 11 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 13 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 17 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \) |
| 19 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \) |
| 23 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 29 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 31 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )^{2} \) |
| 37 | \( ( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )^{2} \) |
| 41 | \( ( 1 - T^{2} + T^{4} )^{10} \) |
| 43 | \( ( 1 - T + T^{2} )^{10}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 47 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} )( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 53 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \) |
| 59 | \( 1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \) |
| 67 | \( ( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} )^{2} \) |
| 71 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} )^{2} \) |
| 73 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{7} + T^{9} - T^{10} + T^{11} - T^{13} + T^{14} - T^{16} + T^{17} - T^{19} + T^{20} ) \) |
| 79 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
| 83 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 89 | \( 1 + T^{2} - T^{6} - T^{8} + T^{12} + T^{14} - T^{18} - T^{20} - T^{22} + T^{26} + T^{28} - T^{32} - T^{34} + T^{38} + T^{40} \) |
| 97 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} + T^{7} - T^{9} - T^{10} - T^{11} + T^{13} + T^{14} - T^{16} - T^{17} + T^{19} + T^{20} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.45278618883605578430725195747, −2.31505568506258091268304537424, −2.29363199859845118940135218515, −2.17846112699346263195687799252, −2.14098193585063054783803207997, −2.07024043898759107144297437644, −2.02671623177416754082186617015, −1.99986209628792604472648204882, −1.99928095693808712463292653951, −1.91199600455429733036112696649, −1.90795356020371765507129609619, −1.80972286849330569909356780281, −1.68066703876015595368781172973, −1.61992630781522830491126593692, −1.60120302223673867464325490395, −1.30482457263549992950813514192, −1.22231599104511510944417701294, −1.22126886167096375928948228949, −1.21606867169053294803011104188, −1.12082148950796432310282603623, −1.11735714751445065116988286945, −1.09228639971093273880120074185, −0.76606977832280473787995230285, −0.66604155894754888257331064168, −0.65238113681850315714511191809,
0.65238113681850315714511191809, 0.66604155894754888257331064168, 0.76606977832280473787995230285, 1.09228639971093273880120074185, 1.11735714751445065116988286945, 1.12082148950796432310282603623, 1.21606867169053294803011104188, 1.22126886167096375928948228949, 1.22231599104511510944417701294, 1.30482457263549992950813514192, 1.60120302223673867464325490395, 1.61992630781522830491126593692, 1.68066703876015595368781172973, 1.80972286849330569909356780281, 1.90795356020371765507129609619, 1.91199600455429733036112696649, 1.99928095693808712463292653951, 1.99986209628792604472648204882, 2.02671623177416754082186617015, 2.07024043898759107144297437644, 2.14098193585063054783803207997, 2.17846112699346263195687799252, 2.29363199859845118940135218515, 2.31505568506258091268304537424, 2.45278618883605578430725195747
Plot not available for L-functions of degree greater than 10.