Properties

Label 6-2175e3-87.86-c0e3-0-3
Degree $6$
Conductor $10289109375$
Sign $1$
Analytic cond. $1.27893$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8-s + 6·9-s − 3·24-s + 10·27-s + 3·29-s − 3·41-s − 6·72-s + 15·81-s + 9·87-s − 3·103-s − 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 3·3-s − 8-s + 6·9-s − 3·24-s + 10·27-s + 3·29-s − 3·41-s − 6·72-s + 15·81-s + 9·87-s − 3·103-s − 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{6} \cdot 29^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{6} \cdot 29^{3}\)
Sign: $1$
Analytic conductor: \(1.27893\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2175} (1826, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 5^{6} \cdot 29^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(4.515133046\)
\(L(\frac12)\) \(\approx\) \(4.515133046\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{3} \)
5 \( 1 \)
29$C_1$ \( ( 1 - T )^{3} \)
good2$C_6$ \( 1 + T^{3} + T^{6} \)
7$C_6$ \( 1 + T^{3} + T^{6} \)
11$C_6$ \( 1 + T^{3} + T^{6} \)
13$C_6$ \( 1 + T^{3} + T^{6} \)
17$C_6$ \( 1 + T^{3} + T^{6} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_2$ \( ( 1 + T + T^{2} )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_6$ \( 1 + T^{3} + T^{6} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_6$ \( 1 + T^{3} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_6$ \( 1 + T^{3} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.408644787817091106536694094947, −7.991267099831890594699457123940, −7.86389041499769093945870291767, −7.66275555624468185180681167655, −7.31490326498810007029635375582, −6.80849427207487440746421475832, −6.72796410866918711335748441382, −6.68791974876211866439026023359, −6.34545213277789513529148227185, −6.02107150574453049313613739909, −5.33594900268624110175744969100, −5.19004193341438494320000767310, −4.93788023362431131508179829057, −4.47194071957267156608671701903, −4.33743472566190014343759443314, −3.98505075658530088173752754451, −3.54680228661875330699676854351, −3.49223951512014967179331160779, −2.94212328958274825648708830591, −2.83614782990033014927984572165, −2.74687679771882961240533101605, −2.13497346391147626444047201176, −1.93764703926138004375136775211, −1.25939835582413232369720352277, −1.18432516009006482961781076353, 1.18432516009006482961781076353, 1.25939835582413232369720352277, 1.93764703926138004375136775211, 2.13497346391147626444047201176, 2.74687679771882961240533101605, 2.83614782990033014927984572165, 2.94212328958274825648708830591, 3.49223951512014967179331160779, 3.54680228661875330699676854351, 3.98505075658530088173752754451, 4.33743472566190014343759443314, 4.47194071957267156608671701903, 4.93788023362431131508179829057, 5.19004193341438494320000767310, 5.33594900268624110175744969100, 6.02107150574453049313613739909, 6.34545213277789513529148227185, 6.68791974876211866439026023359, 6.72796410866918711335748441382, 6.80849427207487440746421475832, 7.31490326498810007029635375582, 7.66275555624468185180681167655, 7.86389041499769093945870291767, 7.991267099831890594699457123940, 8.408644787817091106536694094947

Graph of the $Z$-function along the critical line