L(s) = 1 | + 3·3-s − 8-s + 6·9-s − 3·24-s + 10·27-s + 3·29-s − 3·41-s − 6·72-s + 15·81-s + 9·87-s − 3·103-s − 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | + 3·3-s − 8-s + 6·9-s − 3·24-s + 10·27-s + 3·29-s − 3·41-s − 6·72-s + 15·81-s + 9·87-s − 3·103-s − 9·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
Λ(s)=(=((33⋅56⋅293)s/2ΓC(s)3L(s)Λ(1−s)
Λ(s)=(=((33⋅56⋅293)s/2ΓC(s)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅293
|
Sign: |
1
|
Analytic conductor: |
1.27893 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ2175(1826,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 33⋅56⋅293, ( :0,0,0), 1)
|
Particular Values
L(21) |
≈ |
4.515133046 |
L(21) |
≈ |
4.515133046 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−T)3 |
| 5 | | 1 |
| 29 | C1 | (1−T)3 |
good | 2 | C6 | 1+T3+T6 |
| 7 | C6 | 1+T3+T6 |
| 11 | C6 | 1+T3+T6 |
| 13 | C6 | 1+T3+T6 |
| 17 | C6 | 1+T3+T6 |
| 19 | C1×C1 | (1−T)3(1+T)3 |
| 23 | C1×C1 | (1−T)3(1+T)3 |
| 31 | C1×C1 | (1−T)3(1+T)3 |
| 37 | C1×C1 | (1−T)3(1+T)3 |
| 41 | C2 | (1+T+T2)3 |
| 43 | C1×C1 | (1−T)3(1+T)3 |
| 47 | C6 | 1+T3+T6 |
| 53 | C1×C1 | (1−T)3(1+T)3 |
| 59 | C1×C1 | (1−T)3(1+T)3 |
| 61 | C1×C1 | (1−T)3(1+T)3 |
| 67 | C6 | 1+T3+T6 |
| 71 | C1×C1 | (1−T)3(1+T)3 |
| 73 | C1×C1 | (1−T)3(1+T)3 |
| 79 | C1×C1 | (1−T)3(1+T)3 |
| 83 | C1×C1 | (1−T)3(1+T)3 |
| 89 | C6 | 1+T3+T6 |
| 97 | C1×C1 | (1−T)3(1+T)3 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.408644787817091106536694094947, −7.991267099831890594699457123940, −7.86389041499769093945870291767, −7.66275555624468185180681167655, −7.31490326498810007029635375582, −6.80849427207487440746421475832, −6.72796410866918711335748441382, −6.68791974876211866439026023359, −6.34545213277789513529148227185, −6.02107150574453049313613739909, −5.33594900268624110175744969100, −5.19004193341438494320000767310, −4.93788023362431131508179829057, −4.47194071957267156608671701903, −4.33743472566190014343759443314, −3.98505075658530088173752754451, −3.54680228661875330699676854351, −3.49223951512014967179331160779, −2.94212328958274825648708830591, −2.83614782990033014927984572165, −2.74687679771882961240533101605, −2.13497346391147626444047201176, −1.93764703926138004375136775211, −1.25939835582413232369720352277, −1.18432516009006482961781076353,
1.18432516009006482961781076353, 1.25939835582413232369720352277, 1.93764703926138004375136775211, 2.13497346391147626444047201176, 2.74687679771882961240533101605, 2.83614782990033014927984572165, 2.94212328958274825648708830591, 3.49223951512014967179331160779, 3.54680228661875330699676854351, 3.98505075658530088173752754451, 4.33743472566190014343759443314, 4.47194071957267156608671701903, 4.93788023362431131508179829057, 5.19004193341438494320000767310, 5.33594900268624110175744969100, 6.02107150574453049313613739909, 6.34545213277789513529148227185, 6.68791974876211866439026023359, 6.72796410866918711335748441382, 6.80849427207487440746421475832, 7.31490326498810007029635375582, 7.66275555624468185180681167655, 7.86389041499769093945870291767, 7.991267099831890594699457123940, 8.408644787817091106536694094947