Properties

Label 6-3087e3-1.1-c1e3-0-0
Degree $6$
Conductor $29417779503$
Sign $1$
Analytic cond. $14977.5$
Root an. cond. $4.96485$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 7·4-s + 7·8-s + 9·11-s + 7·16-s + 36·22-s + 11·23-s − 15·25-s + 15·29-s + 14·32-s − 11·37-s − 43-s + 63·44-s + 44·46-s − 60·50-s + 9·53-s + 60·58-s + 28·64-s + 19·67-s + 15·71-s − 44·74-s + 17·79-s − 4·86-s + 63·88-s + 77·92-s − 105·100-s + 36·106-s + ⋯
L(s)  = 1  + 2.82·2-s + 7/2·4-s + 2.47·8-s + 2.71·11-s + 7/4·16-s + 7.67·22-s + 2.29·23-s − 3·25-s + 2.78·29-s + 2.47·32-s − 1.80·37-s − 0.152·43-s + 9.49·44-s + 6.48·46-s − 8.48·50-s + 1.23·53-s + 7.87·58-s + 7/2·64-s + 2.32·67-s + 1.78·71-s − 5.11·74-s + 1.91·79-s − 0.431·86-s + 6.71·88-s + 8.02·92-s − 10.5·100-s + 3.49·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 7^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 7^{9}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 7^{9}\)
Sign: $1$
Analytic conductor: \(14977.5\)
Root analytic conductor: \(4.96485\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{6} \cdot 7^{9} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(29.43491366\)
\(L(\frac12)\) \(\approx\) \(29.43491366\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_6$ \( 1 - p^{2} T + 9 T^{2} - 15 T^{3} + 9 p T^{4} - p^{4} T^{5} + p^{3} T^{6} \)
5$C_2$ \( ( 1 + p T^{2} )^{3} \)
11$C_6$ \( 1 - 9 T + 53 T^{2} - 211 T^{3} + 53 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
13$C_2$ \( ( 1 + p T^{2} )^{3} \)
17$C_2$ \( ( 1 + p T^{2} )^{3} \)
19$C_2$ \( ( 1 + p T^{2} )^{3} \)
23$C_6$ \( 1 - 11 T + 93 T^{2} - 477 T^{3} + 93 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
29$C_6$ \( 1 - 15 T + 113 T^{2} - 659 T^{3} + 113 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
31$C_2$ \( ( 1 + p T^{2} )^{3} \)
37$C_6$ \( 1 + 11 T + 9 T^{2} - 265 T^{3} + 9 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
41$C_2$ \( ( 1 + p T^{2} )^{3} \)
43$C_6$ \( 1 + T - 27 T^{2} - 293 T^{3} - 27 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
47$C_2$ \( ( 1 + p T^{2} )^{3} \)
53$C_6$ \( 1 - 9 T - 31 T^{2} + 643 T^{3} - 31 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
59$C_2$ \( ( 1 + p T^{2} )^{3} \)
61$C_2$ \( ( 1 + p T^{2} )^{3} \)
67$C_6$ \( 1 - 19 T + 109 T^{2} - 265 T^{3} + 109 p T^{4} - 19 p^{2} T^{5} + p^{3} T^{6} \)
71$C_6$ \( 1 - 15 T + 197 T^{2} - 1513 T^{3} + 197 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
73$C_2$ \( ( 1 + p T^{2} )^{3} \)
79$C_6$ \( 1 - 17 T + 37 T^{2} + 673 T^{3} + 37 p T^{4} - 17 p^{2} T^{5} + p^{3} T^{6} \)
83$C_2$ \( ( 1 + p T^{2} )^{3} \)
89$C_2$ \( ( 1 + p T^{2} )^{3} \)
97$C_2$ \( ( 1 + p T^{2} )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50955877166078198185030267690, −7.22842578248106846204210845099, −6.94250687838718004469102453218, −6.87094736714219610876679045354, −6.42524603037223200652341465293, −6.38015201294494446472187689750, −6.25657783361194362387890692977, −5.68546649189159598296953744818, −5.47149361047770508280314573286, −5.45439346302643476216164654637, −4.89481571053025270147292457082, −4.80932642420606617790971185649, −4.67030453927734455630607833899, −4.08131917121667584409392373751, −4.04712632397010636545020001038, −3.92908336003531947022511649019, −3.42250778983192700099441856697, −3.32264246125395514731382553303, −3.25324289369571635484143627577, −2.41086694049968221534765454802, −2.39747507476551997274644725474, −1.82364688034483973152107590677, −1.47531795364083772793048503215, −0.875861957043457171824047561979, −0.78694206905802527860061476517, 0.78694206905802527860061476517, 0.875861957043457171824047561979, 1.47531795364083772793048503215, 1.82364688034483973152107590677, 2.39747507476551997274644725474, 2.41086694049968221534765454802, 3.25324289369571635484143627577, 3.32264246125395514731382553303, 3.42250778983192700099441856697, 3.92908336003531947022511649019, 4.04712632397010636545020001038, 4.08131917121667584409392373751, 4.67030453927734455630607833899, 4.80932642420606617790971185649, 4.89481571053025270147292457082, 5.45439346302643476216164654637, 5.47149361047770508280314573286, 5.68546649189159598296953744818, 6.25657783361194362387890692977, 6.38015201294494446472187689750, 6.42524603037223200652341465293, 6.87094736714219610876679045354, 6.94250687838718004469102453218, 7.22842578248106846204210845099, 7.50955877166078198185030267690

Graph of the $Z$-function along the critical line