L(s) = 1 | − 2-s − 3-s − 5-s + 6-s + 10-s + 15-s − 19-s − 29-s − 30-s − 37-s + 38-s − 43-s + 3·49-s + 57-s + 58-s + 3·71-s − 73-s + 74-s − 79-s − 83-s + 86-s + 87-s − 89-s + 95-s − 3·98-s − 101-s − 103-s + ⋯ |
L(s) = 1 | − 2-s − 3-s − 5-s + 6-s + 10-s + 15-s − 19-s − 29-s − 30-s − 37-s + 38-s − 43-s + 3·49-s + 57-s + 58-s + 3·71-s − 73-s + 74-s − 79-s − 83-s + 86-s + 87-s − 89-s + 95-s − 3·98-s − 101-s − 103-s + ⋯ |
Λ(s)=(=(357911s/2ΓC(s)3L(s)Λ(1−s)
Λ(s)=(=(357911s/2ΓC(s)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
357911
= 713
|
Sign: |
1
|
Analytic conductor: |
4.44883×10−5 |
Root analytic conductor: |
0.188238 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ71(70,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 357911, ( :0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.05498223480 |
L(21) |
≈ |
0.05498223480 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 71 | C1 | (1−T)3 |
good | 2 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 3 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 5 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 7 | C1×C1 | (1−T)3(1+T)3 |
| 11 | C1×C1 | (1−T)3(1+T)3 |
| 13 | C1×C1 | (1−T)3(1+T)3 |
| 17 | C1×C1 | (1−T)3(1+T)3 |
| 19 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 23 | C1×C1 | (1−T)3(1+T)3 |
| 29 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 31 | C1×C1 | (1−T)3(1+T)3 |
| 37 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 41 | C1×C1 | (1−T)3(1+T)3 |
| 43 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 47 | C1×C1 | (1−T)3(1+T)3 |
| 53 | C1×C1 | (1−T)3(1+T)3 |
| 59 | C1×C1 | (1−T)3(1+T)3 |
| 61 | C1×C1 | (1−T)3(1+T)3 |
| 67 | C1×C1 | (1−T)3(1+T)3 |
| 73 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 79 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 83 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 89 | C6 | 1+T+T2+T3+T4+T5+T6 |
| 97 | C1×C1 | (1−T)3(1+T)3 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.58399519906890803499351778176, −12.88778415189161766638407934767, −12.62842911673974380337261507666, −12.42351194541329992426458232503, −11.75493220562099759167484344236, −11.67985104016781996899636064300, −11.17081547941659221637655464575, −11.05204135964904542931077288526, −10.37263061263202496602275828991, −10.24785144415084892602116520791, −9.646341880691708918339787590058, −9.249596659145116242975209696115, −8.775621347957351956553642935712, −8.392664296558968410521780245040, −8.308375254782647564178629435651, −7.34866153009380292102541584258, −7.32935458632589252277476848657, −6.76877928720481535930982673330, −6.02203245587172561884189386059, −5.76082408647750230290643880271, −5.19361966854786324344583978535, −4.51844117616935213608968885293, −3.95531641366854447656333489742, −3.39979849702102685652285544820, −2.19448912992332732423794638884,
2.19448912992332732423794638884, 3.39979849702102685652285544820, 3.95531641366854447656333489742, 4.51844117616935213608968885293, 5.19361966854786324344583978535, 5.76082408647750230290643880271, 6.02203245587172561884189386059, 6.76877928720481535930982673330, 7.32935458632589252277476848657, 7.34866153009380292102541584258, 8.308375254782647564178629435651, 8.392664296558968410521780245040, 8.775621347957351956553642935712, 9.249596659145116242975209696115, 9.646341880691708918339787590058, 10.24785144415084892602116520791, 10.37263061263202496602275828991, 11.05204135964904542931077288526, 11.17081547941659221637655464575, 11.67985104016781996899636064300, 11.75493220562099759167484344236, 12.42351194541329992426458232503, 12.62842911673974380337261507666, 12.88778415189161766638407934767, 13.58399519906890803499351778176