L(s) = 1 | − 3·3-s − 4·5-s + 10·7-s + 6·9-s − 11-s + 12·15-s − 7·17-s + 11·19-s − 30·21-s − 2·23-s − 2·25-s − 10·27-s − 8·29-s + 8·31-s + 3·33-s − 40·35-s − 14·37-s − 41-s + 3·43-s − 24·45-s − 9·47-s + 48·49-s + 21·51-s − 13·53-s + 4·55-s − 33·57-s − 14·59-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 1.78·5-s + 3.77·7-s + 2·9-s − 0.301·11-s + 3.09·15-s − 1.69·17-s + 2.52·19-s − 6.54·21-s − 0.417·23-s − 2/5·25-s − 1.92·27-s − 1.48·29-s + 1.43·31-s + 0.522·33-s − 6.76·35-s − 2.30·37-s − 0.156·41-s + 0.457·43-s − 3.57·45-s − 1.31·47-s + 48/7·49-s + 2.94·51-s − 1.78·53-s + 0.539·55-s − 4.37·57-s − 1.82·59-s + ⋯ |
Λ(s)=(=((212⋅33⋅136)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((212⋅33⋅136)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅33⋅136
|
Sign: |
−1
|
Analytic conductor: |
271778. |
Root analytic conductor: |
8.04826 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 212⋅33⋅136, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)3 |
| 13 | | 1 |
good | 5 | A4×C2 | 1+4T+18T2+39T3+18pT4+4p2T5+p3T6 |
| 7 | A4×C2 | 1−10T+52T2−169T3+52pT4−10p2T5+p3T6 |
| 11 | A4×C2 | 1+T+3T2−21T3+3pT4+p2T5+p3T6 |
| 17 | A4×C2 | 1+7T+65T2+245T3+65pT4+7p2T5+p3T6 |
| 19 | A4×C2 | 1−11T+67T2−305T3+67pT4−11p2T5+p3T6 |
| 23 | A4×C2 | 1+2T+26T2+175T3+26pT4+2p2T5+p3T6 |
| 29 | A4×C2 | 1+8T+92T2+421T3+92pT4+8p2T5+p3T6 |
| 31 | A4×C2 | 1−8T+70T2−299T3+70pT4−8p2T5+p3T6 |
| 37 | A4×C2 | 1+14T+174T2+1127T3+174pT4+14p2T5+p3T6 |
| 41 | A4×C2 | 1+T+121T2+81T3+121pT4+p2T5+p3T6 |
| 43 | A4×C2 | 1−3T+104T2−287T3+104pT4−3p2T5+p3T6 |
| 47 | A4×C2 | 1+9T+21T2−65T3+21pT4+9p2T5+p3T6 |
| 53 | A4×C2 | 1+13T+199T2+1407T3+199pT4+13p2T5+p3T6 |
| 59 | A4×C2 | 1+14T+3pT2+1596T3+3p2T4+14p2T5+p3T6 |
| 61 | A4×C2 | 1+13T+195T2+1363T3+195pT4+13p2T5+p3T6 |
| 67 | A4×C2 | 1−5T+179T2−573T3+179pT4−5p2T5+p3T6 |
| 71 | A4×C2 | 1+6T+134T2+391T3+134pT4+6p2T5+p3T6 |
| 73 | A4×C2 | 1+18T+320T2+2795T3+320pT4+18p2T5+p3T6 |
| 79 | A4×C2 | 1−9T+215T2−1253T3+215pT4−9p2T5+p3T6 |
| 83 | A4×C2 | 1+16T+304T2+2613T3+304pT4+16p2T5+p3T6 |
| 89 | A4×C2 | 1−5T+259T2−891T3+259pT4−5p2T5+p3T6 |
| 97 | A4×C2 | 1+5T+122T2−219T3+122pT4+5p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.46836246232969281859259778709, −7.15499357234526488646541123102, −6.88366889187667061264006806164, −6.63807028833746263630585631779, −6.14100759199415691748954335292, −6.14029808428758175069274343325, −5.73760790204501815927437412603, −5.48603547886983487259632495454, −5.39453012248102383284089808500, −4.96711698134447443500017922298, −4.83218458492577701461055795075, −4.83159231670333882456599014597, −4.55014710503690894056304793394, −4.16655739806712117005005788203, −4.09647229806733100431844738850, −4.02310379444992843536757895038, −3.23471640339378557341973275944, −3.18866982013216305274387279240, −3.13246078384785048990267992256, −2.14690901412227149522107149218, −2.08301381156695593002848589701, −1.85340977498473678510209724924, −1.43487749347466136276338454014, −1.16178119709563314028245008067, −1.15972287209929871956668103191, 0, 0, 0,
1.15972287209929871956668103191, 1.16178119709563314028245008067, 1.43487749347466136276338454014, 1.85340977498473678510209724924, 2.08301381156695593002848589701, 2.14690901412227149522107149218, 3.13246078384785048990267992256, 3.18866982013216305274387279240, 3.23471640339378557341973275944, 4.02310379444992843536757895038, 4.09647229806733100431844738850, 4.16655739806712117005005788203, 4.55014710503690894056304793394, 4.83159231670333882456599014597, 4.83218458492577701461055795075, 4.96711698134447443500017922298, 5.39453012248102383284089808500, 5.48603547886983487259632495454, 5.73760790204501815927437412603, 6.14029808428758175069274343325, 6.14100759199415691748954335292, 6.63807028833746263630585631779, 6.88366889187667061264006806164, 7.15499357234526488646541123102, 7.46836246232969281859259778709