L(s) = 1 | + 3·3-s + 3·7-s + 6·9-s + 6·19-s + 9·21-s + 10·27-s − 12·29-s + 3·31-s − 6·37-s + 21·43-s − 12·47-s + 6·49-s − 6·53-s + 18·57-s + 6·59-s + 3·61-s + 18·63-s + 27·67-s + 12·71-s + 9·73-s − 9·79-s + 15·81-s − 18·83-s − 36·87-s − 24·89-s + 9·93-s − 21·97-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 1.13·7-s + 2·9-s + 1.37·19-s + 1.96·21-s + 1.92·27-s − 2.22·29-s + 0.538·31-s − 0.986·37-s + 3.20·43-s − 1.75·47-s + 6/7·49-s − 0.824·53-s + 2.38·57-s + 0.781·59-s + 0.384·61-s + 2.26·63-s + 3.29·67-s + 1.42·71-s + 1.05·73-s − 1.01·79-s + 5/3·81-s − 1.97·83-s − 3.85·87-s − 2.54·89-s + 0.933·93-s − 2.13·97-s + ⋯ |
Λ(s)=(=((212⋅33⋅136)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((212⋅33⋅136)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅33⋅136
|
Sign: |
1
|
Analytic conductor: |
271778. |
Root analytic conductor: |
8.04826 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 212⋅33⋅136, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
14.62566053 |
L(21) |
≈ |
14.62566053 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)3 |
| 13 | | 1 |
good | 5 | D6 | 1−2T3+p3T6 |
| 7 | S4×C2 | 1−3T+3T2−6T3+3pT4−3p2T5+p3T6 |
| 11 | S4×C2 | 1+9T2+8T3+9pT4+p3T6 |
| 17 | S4×C2 | 1+30T2+16T3+30pT4+p3T6 |
| 19 | S4×C2 | 1−6T+21T2−20T3+21pT4−6p2T5+p3T6 |
| 23 | S4×C2 | 1+45T2−8T3+45pT4+p3T6 |
| 29 | S4×C2 | 1+12T+120T2+702T3+120pT4+12p2T5+p3T6 |
| 31 | S4×C2 | 1−3T+81T2−170T3+81pT4−3p2T5+p3T6 |
| 37 | S4×C2 | 1+6T+102T2+426T3+102pT4+6p2T5+p3T6 |
| 41 | S4×C2 | 1+66T2−156T3+66pT4+p3T6 |
| 43 | S4×C2 | 1−21T+255T2−2018T3+255pT4−21p2T5+p3T6 |
| 47 | S4×C2 | 1+12T+165T2+1104T3+165pT4+12p2T5+p3T6 |
| 53 | S4×C2 | 1+6T+36T2+428T3+36pT4+6p2T5+p3T6 |
| 59 | S4×C2 | 1−6T+105T2−676T3+105pT4−6p2T5+p3T6 |
| 61 | S4×C2 | 1−3T+138T2−199T3+138pT4−3p2T5+p3T6 |
| 67 | S4×C2 | 1−27T+423T2−4142T3+423pT4−27p2T5+p3T6 |
| 71 | S4×C2 | 1−12T+237T2−1664T3+237pT4−12p2T5+p3T6 |
| 73 | S4×C2 | 1−9T+186T2−1145T3+186pT4−9p2T5+p3T6 |
| 79 | S4×C2 | 1+9T+117T2+1438T3+117pT4+9p2T5+p3T6 |
| 83 | S4×C2 | 1+18T+237T2+1996T3+237pT4+18p2T5+p3T6 |
| 89 | S4×C2 | 1+24T+399T2+4320T3+399pT4+24p2T5+p3T6 |
| 97 | S4×C2 | 1+21T+423T2+4310T3+423pT4+21p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.12404639569665187877935060491, −6.72852343416445593432092816184, −6.66083898543128818275623930313, −6.33474474586811010497403058514, −5.77814599739960985306150567832, −5.62722860431681652715986995653, −5.56150949518056302223046549025, −5.17577021097293324623786237849, −5.17082425503951890388431932340, −4.72850975996421025499019549823, −4.27881130825608904109717942493, −4.23153084687601711150844864763, −4.11237685736333142575421111520, −3.69398370866153121224039493738, −3.47363584932659434163518151631, −3.29596905097072717731036906283, −2.84163844020425474232110561602, −2.70764088629755819356285101718, −2.47059240046677926020914839401, −1.99830498035532661553437333961, −1.73821565662767161778269891108, −1.72420577059930845981412376274, −1.22502617332601423812403138027, −0.77662766392430302970864618650, −0.50580468635573978042579600483,
0.50580468635573978042579600483, 0.77662766392430302970864618650, 1.22502617332601423812403138027, 1.72420577059930845981412376274, 1.73821565662767161778269891108, 1.99830498035532661553437333961, 2.47059240046677926020914839401, 2.70764088629755819356285101718, 2.84163844020425474232110561602, 3.29596905097072717731036906283, 3.47363584932659434163518151631, 3.69398370866153121224039493738, 4.11237685736333142575421111520, 4.23153084687601711150844864763, 4.27881130825608904109717942493, 4.72850975996421025499019549823, 5.17082425503951890388431932340, 5.17577021097293324623786237849, 5.56150949518056302223046549025, 5.62722860431681652715986995653, 5.77814599739960985306150567832, 6.33474474586811010497403058514, 6.66083898543128818275623930313, 6.72852343416445593432092816184, 7.12404639569665187877935060491