L(s) = 1 | + 64·2-s + 324·3-s + 2.56e3·4-s + 942·5-s + 2.07e4·6-s + 5.08e3·7-s + 8.19e4·8-s + 6.56e4·9-s + 6.02e4·10-s − 2.08e4·11-s + 8.29e5·12-s + 2.60e5·13-s + 3.25e5·14-s + 3.05e5·15-s + 2.29e6·16-s + 3.34e5·17-s + 4.19e6·18-s + 1.12e6·19-s + 2.41e6·20-s + 1.64e6·21-s − 1.33e6·22-s + 3.42e5·23-s + 2.65e7·24-s − 1.62e6·25-s + 1.66e7·26-s + 1.06e7·27-s + 1.30e7·28-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 2.30·3-s + 5·4-s + 0.674·5-s + 6.53·6-s + 0.800·7-s + 7.07·8-s + 10/3·9-s + 1.90·10-s − 0.428·11-s + 11.5·12-s + 2.53·13-s + 2.26·14-s + 1.55·15-s + 35/4·16-s + 0.970·17-s + 9.42·18-s + 1.98·19-s + 3.37·20-s + 1.84·21-s − 1.21·22-s + 0.255·23-s + 16.3·24-s − 0.832·25-s + 7.16·26-s + 3.84·27-s + 4.00·28-s + ⋯ |
Λ(s)=(=((24⋅34⋅174)s/2ΓC(s)4L(s)Λ(10−s)
Λ(s)=(=((24⋅34⋅174)s/2ΓC(s+9/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅174
|
Sign: |
1
|
Analytic conductor: |
7.61641×106 |
Root analytic conductor: |
7.24801 |
Motivic weight: |
9 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅174, ( :9/2,9/2,9/2,9/2), 1)
|
Particular Values
L(5) |
≈ |
432.7199342 |
L(21) |
≈ |
432.7199342 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−p4T)4 |
| 3 | C1 | (1−p4T)4 |
| 17 | C1 | (1−p4T)4 |
good | 5 | C2≀S4 | 1−942T+2513177T2−199269254pT3+248455201404p2T4−199269254p10T5+2513177p18T6−942p27T7+p36T8 |
| 7 | C2≀S4 | 1−5088T+10711044pT2−1309074336p3T3+13042887597898p3T4−1309074336p12T5+10711044p19T6−5088p27T7+p36T8 |
| 11 | C2≀S4 | 1+20822T+5200446045T2+162407960699694T3+14735046737655335836T4+162407960699694p9T5+5200446045p18T6+20822p27T7+p36T8 |
| 13 | C2≀S4 | 1−260722T+52514528265T2−44770841630930p2T3+87⋯44T4−44770841630930p11T5+52514528265p18T6−260722p27T7+p36T8 |
| 19 | C2≀S4 | 1−1127114T+1305453782845T2−938080635866799154T3+63⋯48T4−938080635866799154p9T5+1305453782845p18T6−1127114p27T7+p36T8 |
| 23 | C2≀S4 | 1−342858T+2047828581293T2+4229256375065294838T3−75⋯20T4+4229256375065294838p9T5+2047828581293p18T6−342858p27T7+p36T8 |
| 29 | C2≀S4 | 1−3453272T+16723369193116T2+70936160031324843896T3−20⋯14T4+70936160031324843896p9T5+16723369193116p18T6−3453272p27T7+p36T8 |
| 31 | C2≀S4 | 1−8734524T+47077621271488T2+81617446328228058004T3−85⋯78T4+81617446328228058004p9T5+47077621271488p18T6−8734524p27T7+p36T8 |
| 37 | C2≀S4 | 1−4427508T+170245936358216T2−19⋯88T3+17⋯14T4−19⋯88p9T5+170245936358216p18T6−4427508p27T7+p36T8 |
| 41 | C2≀S4 | 1+12694878T+571000448443169T2+33⋯74T3+13⋯76T4+33⋯74p9T5+571000448443169p18T6+12694878p27T7+p36T8 |
| 43 | C2≀S4 | 1−11513590T+1919754639109133T2−16⋯06T3+14⋯92T4−16⋯06p9T5+1919754639109133p18T6−11513590p27T7+p36T8 |
| 47 | C2≀S4 | 1+1620412T+3186517820480528T2−12⋯88T3+45⋯74T4−12⋯88p9T5+3186517820480528p18T6+1620412p27T7+p36T8 |
| 53 | C2≀S4 | 1−42954392T+9829335077803292T2−46⋯56T3+42⋯98T4−46⋯56p9T5+9829335077803292p18T6−42954392p27T7+p36T8 |
| 59 | C2≀S4 | 1+30959244T+14141345826426368T2+13⋯40T3+12⋯62T4+13⋯40p9T5+14141345826426368p18T6+30959244p27T7+p36T8 |
| 61 | C2≀S4 | 1+52264348T+16258175211362104T2−10⋯96T3+79⋯66T4−10⋯96p9T5+16258175211362104p18T6+52264348p27T7+p36T8 |
| 67 | C2≀S4 | 1−268395776T+94879502505139948T2−13⋯32T3+31⋯98T4−13⋯32p9T5+94879502505139948p18T6−268395776p27T7+p36T8 |
| 71 | C2≀S4 | 1−405104640T+196082843800580780T2−47⋯60T3+13⋯38T4−47⋯60p9T5+196082843800580780p18T6−405104640p27T7+p36T8 |
| 73 | C2≀S4 | 1−80652312T+220296531505778444T2−14⋯08T3+19⋯06T4−14⋯08p9T5+220296531505778444p18T6−80652312p27T7+p36T8 |
| 79 | C2≀S4 | 1+153459652T+351535263707479936T2+43⋯68T3+59⋯66T4+43⋯68p9T5+351535263707479936p18T6+153459652p27T7+p36T8 |
| 83 | C2≀S4 | 1−963057596T+753242391013504368T2−43⋯60T3+22⋯66T4−43⋯60p9T5+753242391013504368p18T6−963057596p27T7+p36T8 |
| 89 | C2≀S4 | 1−1052288804T+1511343518252651000T2−98⋯24T3+79⋯78T4−98⋯24p9T5+1511343518252651000p18T6−1052288804p27T7+p36T8 |
| 97 | C2≀S4 | 1−340518220T+2842687229221943880T2−68⋯08T3+31⋯62T4−68⋯08p9T5+2842687229221943880p18T6−340518220p27T7+p36T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.400597831741162369422740489997, −7.69408136750643354346208589279, −7.66996318468826532431755722387, −7.61053511825945128538483787804, −7.31945320421481453145812182693, −6.43430435568886477839358906226, −6.39344764440031256656743352707, −6.25375694774902370799747778372, −6.07402294226655892280926950871, −5.22757285037087253942056979328, −5.17546941442672627763060288287, −4.88229729551507725124123543426, −4.81364852128904205695527148469, −3.91276176140831411905610703583, −3.84801286158904071336871570042, −3.60400932766711015802880228142, −3.48097423040603140407962548083, −3.04096669046518301647300730150, −2.53588402199264398097523930543, −2.51335848937638530059648101722, −2.15583250461161346530355996139, −1.54613552673476411772990172076, −1.26720096324756830090096338295, −1.15652616571748931842182441642, −0.806235984038850443909744718004,
0.806235984038850443909744718004, 1.15652616571748931842182441642, 1.26720096324756830090096338295, 1.54613552673476411772990172076, 2.15583250461161346530355996139, 2.51335848937638530059648101722, 2.53588402199264398097523930543, 3.04096669046518301647300730150, 3.48097423040603140407962548083, 3.60400932766711015802880228142, 3.84801286158904071336871570042, 3.91276176140831411905610703583, 4.81364852128904205695527148469, 4.88229729551507725124123543426, 5.17546941442672627763060288287, 5.22757285037087253942056979328, 6.07402294226655892280926950871, 6.25375694774902370799747778372, 6.39344764440031256656743352707, 6.43430435568886477839358906226, 7.31945320421481453145812182693, 7.61053511825945128538483787804, 7.66996318468826532431755722387, 7.69408136750643354346208589279, 8.400597831741162369422740489997