Properties

Label 8-102e4-1.1-c9e4-0-0
Degree 88
Conductor 108243216108243216
Sign 11
Analytic cond. 7.61641×1067.61641\times 10^{6}
Root an. cond. 7.248017.24801
Motivic weight 99
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·2-s + 324·3-s + 2.56e3·4-s + 942·5-s + 2.07e4·6-s + 5.08e3·7-s + 8.19e4·8-s + 6.56e4·9-s + 6.02e4·10-s − 2.08e4·11-s + 8.29e5·12-s + 2.60e5·13-s + 3.25e5·14-s + 3.05e5·15-s + 2.29e6·16-s + 3.34e5·17-s + 4.19e6·18-s + 1.12e6·19-s + 2.41e6·20-s + 1.64e6·21-s − 1.33e6·22-s + 3.42e5·23-s + 2.65e7·24-s − 1.62e6·25-s + 1.66e7·26-s + 1.06e7·27-s + 1.30e7·28-s + ⋯
L(s)  = 1  + 2.82·2-s + 2.30·3-s + 5·4-s + 0.674·5-s + 6.53·6-s + 0.800·7-s + 7.07·8-s + 10/3·9-s + 1.90·10-s − 0.428·11-s + 11.5·12-s + 2.53·13-s + 2.26·14-s + 1.55·15-s + 35/4·16-s + 0.970·17-s + 9.42·18-s + 1.98·19-s + 3.37·20-s + 1.84·21-s − 1.21·22-s + 0.255·23-s + 16.3·24-s − 0.832·25-s + 7.16·26-s + 3.84·27-s + 4.00·28-s + ⋯

Functional equation

Λ(s)=((2434174)s/2ΓC(s)4L(s)=(Λ(10s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}
Λ(s)=((2434174)s/2ΓC(s+9/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 24341742^{4} \cdot 3^{4} \cdot 17^{4}
Sign: 11
Analytic conductor: 7.61641×1067.61641\times 10^{6}
Root analytic conductor: 7.248017.24801
Motivic weight: 99
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 2434174, ( :9/2,9/2,9/2,9/2), 1)(8,\ 2^{4} \cdot 3^{4} \cdot 17^{4} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )

Particular Values

L(5)L(5) \approx 432.7199342432.7199342
L(12)L(\frac12) \approx 432.7199342432.7199342
L(112)L(\frac{11}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 (1p4T)4 ( 1 - p^{4} T )^{4}
3C1C_1 (1p4T)4 ( 1 - p^{4} T )^{4}
17C1C_1 (1p4T)4 ( 1 - p^{4} T )^{4}
good5C2S4C_2 \wr S_4 1942T+2513177T2199269254pT3+248455201404p2T4199269254p10T5+2513177p18T6942p27T7+p36T8 1 - 942 T + 2513177 T^{2} - 199269254 p T^{3} + 248455201404 p^{2} T^{4} - 199269254 p^{10} T^{5} + 2513177 p^{18} T^{6} - 942 p^{27} T^{7} + p^{36} T^{8}
7C2S4C_2 \wr S_4 15088T+10711044pT21309074336p3T3+13042887597898p3T41309074336p12T5+10711044p19T65088p27T7+p36T8 1 - 5088 T + 10711044 p T^{2} - 1309074336 p^{3} T^{3} + 13042887597898 p^{3} T^{4} - 1309074336 p^{12} T^{5} + 10711044 p^{19} T^{6} - 5088 p^{27} T^{7} + p^{36} T^{8}
11C2S4C_2 \wr S_4 1+20822T+5200446045T2+162407960699694T3+14735046737655335836T4+162407960699694p9T5+5200446045p18T6+20822p27T7+p36T8 1 + 20822 T + 5200446045 T^{2} + 162407960699694 T^{3} + 14735046737655335836 T^{4} + 162407960699694 p^{9} T^{5} + 5200446045 p^{18} T^{6} + 20822 p^{27} T^{7} + p^{36} T^{8}
13C2S4C_2 \wr S_4 1260722T+52514528265T244770841630930p2T3+ 1 - 260722 T + 52514528265 T^{2} - 44770841630930 p^{2} T^{3} + 87 ⁣ ⁣4487\!\cdots\!44T444770841630930p11T5+52514528265p18T6260722p27T7+p36T8 T^{4} - 44770841630930 p^{11} T^{5} + 52514528265 p^{18} T^{6} - 260722 p^{27} T^{7} + p^{36} T^{8}
19C2S4C_2 \wr S_4 11127114T+1305453782845T2938080635866799154T3+ 1 - 1127114 T + 1305453782845 T^{2} - 938080635866799154 T^{3} + 63 ⁣ ⁣4863\!\cdots\!48T4938080635866799154p9T5+1305453782845p18T61127114p27T7+p36T8 T^{4} - 938080635866799154 p^{9} T^{5} + 1305453782845 p^{18} T^{6} - 1127114 p^{27} T^{7} + p^{36} T^{8}
23C2S4C_2 \wr S_4 1342858T+2047828581293T2+4229256375065294838T3 1 - 342858 T + 2047828581293 T^{2} + 4229256375065294838 T^{3} - 75 ⁣ ⁣2075\!\cdots\!20T4+4229256375065294838p9T5+2047828581293p18T6342858p27T7+p36T8 T^{4} + 4229256375065294838 p^{9} T^{5} + 2047828581293 p^{18} T^{6} - 342858 p^{27} T^{7} + p^{36} T^{8}
29C2S4C_2 \wr S_4 13453272T+16723369193116T2+70936160031324843896T3 1 - 3453272 T + 16723369193116 T^{2} + 70936160031324843896 T^{3} - 20 ⁣ ⁣1420\!\cdots\!14T4+70936160031324843896p9T5+16723369193116p18T63453272p27T7+p36T8 T^{4} + 70936160031324843896 p^{9} T^{5} + 16723369193116 p^{18} T^{6} - 3453272 p^{27} T^{7} + p^{36} T^{8}
31C2S4C_2 \wr S_4 18734524T+47077621271488T2+81617446328228058004T3 1 - 8734524 T + 47077621271488 T^{2} + 81617446328228058004 T^{3} - 85 ⁣ ⁣7885\!\cdots\!78T4+81617446328228058004p9T5+47077621271488p18T68734524p27T7+p36T8 T^{4} + 81617446328228058004 p^{9} T^{5} + 47077621271488 p^{18} T^{6} - 8734524 p^{27} T^{7} + p^{36} T^{8}
37C2S4C_2 \wr S_4 14427508T+170245936358216T2 1 - 4427508 T + 170245936358216 T^{2} - 19 ⁣ ⁣8819\!\cdots\!88T3+ T^{3} + 17 ⁣ ⁣1417\!\cdots\!14T4 T^{4} - 19 ⁣ ⁣8819\!\cdots\!88p9T5+170245936358216p18T64427508p27T7+p36T8 p^{9} T^{5} + 170245936358216 p^{18} T^{6} - 4427508 p^{27} T^{7} + p^{36} T^{8}
41C2S4C_2 \wr S_4 1+12694878T+571000448443169T2+ 1 + 12694878 T + 571000448443169 T^{2} + 33 ⁣ ⁣7433\!\cdots\!74T3+ T^{3} + 13 ⁣ ⁣7613\!\cdots\!76T4+ T^{4} + 33 ⁣ ⁣7433\!\cdots\!74p9T5+571000448443169p18T6+12694878p27T7+p36T8 p^{9} T^{5} + 571000448443169 p^{18} T^{6} + 12694878 p^{27} T^{7} + p^{36} T^{8}
43C2S4C_2 \wr S_4 111513590T+1919754639109133T2 1 - 11513590 T + 1919754639109133 T^{2} - 16 ⁣ ⁣0616\!\cdots\!06T3+ T^{3} + 14 ⁣ ⁣9214\!\cdots\!92T4 T^{4} - 16 ⁣ ⁣0616\!\cdots\!06p9T5+1919754639109133p18T611513590p27T7+p36T8 p^{9} T^{5} + 1919754639109133 p^{18} T^{6} - 11513590 p^{27} T^{7} + p^{36} T^{8}
47C2S4C_2 \wr S_4 1+1620412T+3186517820480528T2 1 + 1620412 T + 3186517820480528 T^{2} - 12 ⁣ ⁣8812\!\cdots\!88T3+ T^{3} + 45 ⁣ ⁣7445\!\cdots\!74T4 T^{4} - 12 ⁣ ⁣8812\!\cdots\!88p9T5+3186517820480528p18T6+1620412p27T7+p36T8 p^{9} T^{5} + 3186517820480528 p^{18} T^{6} + 1620412 p^{27} T^{7} + p^{36} T^{8}
53C2S4C_2 \wr S_4 142954392T+9829335077803292T2 1 - 42954392 T + 9829335077803292 T^{2} - 46 ⁣ ⁣5646\!\cdots\!56T3+ T^{3} + 42 ⁣ ⁣9842\!\cdots\!98T4 T^{4} - 46 ⁣ ⁣5646\!\cdots\!56p9T5+9829335077803292p18T642954392p27T7+p36T8 p^{9} T^{5} + 9829335077803292 p^{18} T^{6} - 42954392 p^{27} T^{7} + p^{36} T^{8}
59C2S4C_2 \wr S_4 1+30959244T+14141345826426368T2+ 1 + 30959244 T + 14141345826426368 T^{2} + 13 ⁣ ⁣4013\!\cdots\!40T3+ T^{3} + 12 ⁣ ⁣6212\!\cdots\!62T4+ T^{4} + 13 ⁣ ⁣4013\!\cdots\!40p9T5+14141345826426368p18T6+30959244p27T7+p36T8 p^{9} T^{5} + 14141345826426368 p^{18} T^{6} + 30959244 p^{27} T^{7} + p^{36} T^{8}
61C2S4C_2 \wr S_4 1+52264348T+16258175211362104T2 1 + 52264348 T + 16258175211362104 T^{2} - 10 ⁣ ⁣9610\!\cdots\!96T3+ T^{3} + 79 ⁣ ⁣6679\!\cdots\!66T4 T^{4} - 10 ⁣ ⁣9610\!\cdots\!96p9T5+16258175211362104p18T6+52264348p27T7+p36T8 p^{9} T^{5} + 16258175211362104 p^{18} T^{6} + 52264348 p^{27} T^{7} + p^{36} T^{8}
67C2S4C_2 \wr S_4 1268395776T+94879502505139948T2 1 - 268395776 T + 94879502505139948 T^{2} - 13 ⁣ ⁣3213\!\cdots\!32T3+ T^{3} + 31 ⁣ ⁣9831\!\cdots\!98T4 T^{4} - 13 ⁣ ⁣3213\!\cdots\!32p9T5+94879502505139948p18T6268395776p27T7+p36T8 p^{9} T^{5} + 94879502505139948 p^{18} T^{6} - 268395776 p^{27} T^{7} + p^{36} T^{8}
71C2S4C_2 \wr S_4 1405104640T+196082843800580780T2 1 - 405104640 T + 196082843800580780 T^{2} - 47 ⁣ ⁣6047\!\cdots\!60T3+ T^{3} + 13 ⁣ ⁣3813\!\cdots\!38T4 T^{4} - 47 ⁣ ⁣6047\!\cdots\!60p9T5+196082843800580780p18T6405104640p27T7+p36T8 p^{9} T^{5} + 196082843800580780 p^{18} T^{6} - 405104640 p^{27} T^{7} + p^{36} T^{8}
73C2S4C_2 \wr S_4 180652312T+220296531505778444T2 1 - 80652312 T + 220296531505778444 T^{2} - 14 ⁣ ⁣0814\!\cdots\!08T3+ T^{3} + 19 ⁣ ⁣0619\!\cdots\!06T4 T^{4} - 14 ⁣ ⁣0814\!\cdots\!08p9T5+220296531505778444p18T680652312p27T7+p36T8 p^{9} T^{5} + 220296531505778444 p^{18} T^{6} - 80652312 p^{27} T^{7} + p^{36} T^{8}
79C2S4C_2 \wr S_4 1+153459652T+351535263707479936T2+ 1 + 153459652 T + 351535263707479936 T^{2} + 43 ⁣ ⁣6843\!\cdots\!68T3+ T^{3} + 59 ⁣ ⁣6659\!\cdots\!66T4+ T^{4} + 43 ⁣ ⁣6843\!\cdots\!68p9T5+351535263707479936p18T6+153459652p27T7+p36T8 p^{9} T^{5} + 351535263707479936 p^{18} T^{6} + 153459652 p^{27} T^{7} + p^{36} T^{8}
83C2S4C_2 \wr S_4 1963057596T+753242391013504368T2 1 - 963057596 T + 753242391013504368 T^{2} - 43 ⁣ ⁣6043\!\cdots\!60T3+ T^{3} + 22 ⁣ ⁣6622\!\cdots\!66T4 T^{4} - 43 ⁣ ⁣6043\!\cdots\!60p9T5+753242391013504368p18T6963057596p27T7+p36T8 p^{9} T^{5} + 753242391013504368 p^{18} T^{6} - 963057596 p^{27} T^{7} + p^{36} T^{8}
89C2S4C_2 \wr S_4 11052288804T+1511343518252651000T2 1 - 1052288804 T + 1511343518252651000 T^{2} - 98 ⁣ ⁣2498\!\cdots\!24T3+ T^{3} + 79 ⁣ ⁣7879\!\cdots\!78T4 T^{4} - 98 ⁣ ⁣2498\!\cdots\!24p9T5+1511343518252651000p18T61052288804p27T7+p36T8 p^{9} T^{5} + 1511343518252651000 p^{18} T^{6} - 1052288804 p^{27} T^{7} + p^{36} T^{8}
97C2S4C_2 \wr S_4 1340518220T+2842687229221943880T2 1 - 340518220 T + 2842687229221943880 T^{2} - 68 ⁣ ⁣0868\!\cdots\!08T3+ T^{3} + 31 ⁣ ⁣6231\!\cdots\!62T4 T^{4} - 68 ⁣ ⁣0868\!\cdots\!08p9T5+2842687229221943880p18T6340518220p27T7+p36T8 p^{9} T^{5} + 2842687229221943880 p^{18} T^{6} - 340518220 p^{27} T^{7} + p^{36} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.400597831741162369422740489997, −7.69408136750643354346208589279, −7.66996318468826532431755722387, −7.61053511825945128538483787804, −7.31945320421481453145812182693, −6.43430435568886477839358906226, −6.39344764440031256656743352707, −6.25375694774902370799747778372, −6.07402294226655892280926950871, −5.22757285037087253942056979328, −5.17546941442672627763060288287, −4.88229729551507725124123543426, −4.81364852128904205695527148469, −3.91276176140831411905610703583, −3.84801286158904071336871570042, −3.60400932766711015802880228142, −3.48097423040603140407962548083, −3.04096669046518301647300730150, −2.53588402199264398097523930543, −2.51335848937638530059648101722, −2.15583250461161346530355996139, −1.54613552673476411772990172076, −1.26720096324756830090096338295, −1.15652616571748931842182441642, −0.806235984038850443909744718004, 0.806235984038850443909744718004, 1.15652616571748931842182441642, 1.26720096324756830090096338295, 1.54613552673476411772990172076, 2.15583250461161346530355996139, 2.51335848937638530059648101722, 2.53588402199264398097523930543, 3.04096669046518301647300730150, 3.48097423040603140407962548083, 3.60400932766711015802880228142, 3.84801286158904071336871570042, 3.91276176140831411905610703583, 4.81364852128904205695527148469, 4.88229729551507725124123543426, 5.17546941442672627763060288287, 5.22757285037087253942056979328, 6.07402294226655892280926950871, 6.25375694774902370799747778372, 6.39344764440031256656743352707, 6.43430435568886477839358906226, 7.31945320421481453145812182693, 7.61053511825945128538483787804, 7.66996318468826532431755722387, 7.69408136750643354346208589279, 8.400597831741162369422740489997

Graph of the ZZ-function along the critical line