L(s) = 1 | − 8·7-s − 32·13-s + 32·19-s + 72·25-s + 120·31-s − 88·37-s + 144·43-s + 36·49-s − 200·61-s + 112·67-s + 272·73-s + 488·79-s + 256·91-s + 160·97-s + 40·103-s − 192·109-s + 372·121-s + 127-s + 131-s − 256·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 8/7·7-s − 2.46·13-s + 1.68·19-s + 2.87·25-s + 3.87·31-s − 2.37·37-s + 3.34·43-s + 0.734·49-s − 3.27·61-s + 1.67·67-s + 3.72·73-s + 6.17·79-s + 2.81·91-s + 1.64·97-s + 0.388·103-s − 1.76·109-s + 3.07·121-s + 0.00787·127-s + 0.00763·131-s − 1.92·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯ |
Λ(s)=(=((228⋅38)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((228⋅38)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅38
|
Sign: |
1
|
Analytic conductor: |
970845. |
Root analytic conductor: |
5.60265 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅38, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
5.028939093 |
L(21) |
≈ |
5.028939093 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | D4×C2 | 1−72T2+98p2T4−72p4T6+p8T8 |
| 7 | D4 | (1+4T+6T2+4p2T3+p4T4)2 |
| 11 | D4×C2 | 1−372T2+62342T4−372p4T6+p8T8 |
| 13 | D4 | (1+16T+186T2+16p2T3+p4T4)2 |
| 17 | D4×C2 | 1−288T2+184322T4−288p4T6+p8T8 |
| 19 | D4 | (1−16T+690T2−16p2T3+p4T4)2 |
| 23 | C22 | (1−858T2+p4T4)2 |
| 29 | D4×C2 | 1−2152T2+2530002T4−2152p4T6+p8T8 |
| 31 | D4 | (1−60T+2726T2−60p2T3+p4T4)2 |
| 37 | D4 | (1+44T+2838T2+44p2T3+p4T4)2 |
| 41 | D4×C2 | 1−2560T2+3056322T4−2560p4T6+p8T8 |
| 43 | D4 | (1−72T+3458T2−72p2T3+p4T4)2 |
| 47 | D4×C2 | 1−6900T2+21047462T4−6900p4T6+p8T8 |
| 53 | D4×C2 | 1−7720T2+28930962T4−7720p4T6+p8T8 |
| 59 | D4×C2 | 1+1500T2+2678822T4+1500p4T6+p8T8 |
| 61 | D4 | (1+100T+8406T2+100p2T3+p4T4)2 |
| 67 | D4 | (1−56T+9666T2−56p2T3+p4T4)2 |
| 71 | D4×C2 | 1−5044T2+16873062T4−5044p4T6+p8T8 |
| 73 | D4 | (1−136T+14898T2−136p2T3+p4T4)2 |
| 79 | D4 | (1−244T+26502T2−244p2T3+p4T4)2 |
| 83 | D4×C2 | 1+1484T2−19009338T4+1484p4T6+p8T8 |
| 89 | D4×C2 | 1−11712T2+138025922T4−11712p4T6+p8T8 |
| 97 | D4 | (1−80T+4194T2−80p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.88961183828961391015109324318, −6.50223555695454273667829709796, −6.32670867689445088743032657016, −6.27769106380536491595246363123, −6.14208382147177271435000910262, −5.49778010711917415983575565184, −5.47678830966665186965807040883, −5.11811899401695851129424763336, −4.93282626490535246798707245544, −4.79847217933596630385796533873, −4.65400458477585401415392265607, −4.43999388072695122446673076133, −4.05026804549170209153675096445, −3.53875495838113256121120469402, −3.35038757233585790783861980824, −3.24268340789671488726901523034, −3.10426346327897135685863972591, −2.50647276578129634348582102298, −2.48327639166800387397039894368, −2.26671852764699627919093088516, −1.97948683099674901851727037853, −1.12494548331399667867745763690, −0.841463943587056048169589226301, −0.804914850890778932411711137567, −0.40491247981270283916694061408,
0.40491247981270283916694061408, 0.804914850890778932411711137567, 0.841463943587056048169589226301, 1.12494548331399667867745763690, 1.97948683099674901851727037853, 2.26671852764699627919093088516, 2.48327639166800387397039894368, 2.50647276578129634348582102298, 3.10426346327897135685863972591, 3.24268340789671488726901523034, 3.35038757233585790783861980824, 3.53875495838113256121120469402, 4.05026804549170209153675096445, 4.43999388072695122446673076133, 4.65400458477585401415392265607, 4.79847217933596630385796533873, 4.93282626490535246798707245544, 5.11811899401695851129424763336, 5.47678830966665186965807040883, 5.49778010711917415983575565184, 6.14208382147177271435000910262, 6.27769106380536491595246363123, 6.32670867689445088743032657016, 6.50223555695454273667829709796, 6.88961183828961391015109324318