Properties

Label 8-1152e4-1.1-c2e4-0-8
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $970845.$
Root an. cond. $5.60265$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 24·13-s + 8·17-s + 4·25-s + 136·29-s − 40·37-s − 8·41-s + 100·49-s − 88·53-s − 296·61-s + 192·65-s + 88·73-s + 64·85-s − 216·89-s − 328·97-s − 24·101-s + 440·109-s + 312·113-s + 140·121-s − 72·125-s + 127-s + 131-s + 137-s + 139-s + 1.08e3·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 8/5·5-s + 1.84·13-s + 8/17·17-s + 4/25·25-s + 4.68·29-s − 1.08·37-s − 0.195·41-s + 2.04·49-s − 1.66·53-s − 4.85·61-s + 2.95·65-s + 1.20·73-s + 0.752·85-s − 2.42·89-s − 3.38·97-s − 0.237·101-s + 4.03·109-s + 2.76·113-s + 1.15·121-s − 0.575·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 7.50·145-s + 0.00671·149-s + 0.00662·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(970845.\)
Root analytic conductor: \(5.60265\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.243985653\)
\(L(\frac12)\) \(\approx\) \(4.243985653\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( ( 1 - 4 T + 22 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 100 T^{2} + 5254 T^{4} - 100 p^{4} T^{6} + p^{8} T^{8} \)
11$D_4\times C_2$ \( 1 - 140 T^{2} + 5382 T^{4} - 140 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 - 12 T + 342 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 - 4 T + 454 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 780 T^{2} + 402374 T^{4} - 780 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 484 T^{2} + 517894 T^{4} - 484 p^{4} T^{6} + p^{8} T^{8} \)
29$D_{4}$ \( ( 1 - 68 T + 2806 T^{2} - 68 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 126 T^{2} + p^{4} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 20 T + 1270 T^{2} + 20 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 4 T + 2854 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 2764 T^{2} + 8710534 T^{4} - 2764 p^{4} T^{6} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 7428 T^{2} + 23258246 T^{4} - 7428 p^{4} T^{6} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 + 44 T + 6070 T^{2} + 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 11020 T^{2} + 52720774 T^{4} - 11020 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 148 T + 11350 T^{2} + 148 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 11980 T^{2} + 75342534 T^{4} - 11980 p^{4} T^{6} + p^{8} T^{8} \)
71$D_4\times C_2$ \( 1 - 18276 T^{2} + 133865606 T^{4} - 18276 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 44 T + 9990 T^{2} - 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 1028 T^{2} + 28324230 T^{4} - 1028 p^{4} T^{6} + p^{8} T^{8} \)
83$D_4\times C_2$ \( 1 - 5452 T^{2} + 97966918 T^{4} - 5452 p^{4} T^{6} + p^{8} T^{8} \)
89$D_{4}$ \( ( 1 + 108 T + 15558 T^{2} + 108 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 164 T + 22342 T^{2} + 164 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.81125283867734505342876355094, −6.61305073222305456755872921900, −6.22625227185466288804829429416, −6.05351852560833262930926439572, −5.88500301737042743491089433190, −5.88426142744681422413003726991, −5.55108766592641729578118744814, −5.44844050455904940744911690523, −4.74558532804764279152745288850, −4.71867040930663527999360604692, −4.57283466723973742930082598553, −4.54747047727654709425165837113, −4.02866305823115260208026311973, −3.72953669468041300617525627341, −3.21816053225964689935714969684, −3.20836054977621608618266975002, −3.12690653441728753669752836101, −2.71064459419176726937569400257, −2.22552855246060675926367930578, −2.14941232133283821755671965146, −1.74243779977826900137093323558, −1.26569773991839882038636133384, −1.08885056622549555231427795650, −1.06390857272983656068718462499, −0.23695901959675035100910703579, 0.23695901959675035100910703579, 1.06390857272983656068718462499, 1.08885056622549555231427795650, 1.26569773991839882038636133384, 1.74243779977826900137093323558, 2.14941232133283821755671965146, 2.22552855246060675926367930578, 2.71064459419176726937569400257, 3.12690653441728753669752836101, 3.20836054977621608618266975002, 3.21816053225964689935714969684, 3.72953669468041300617525627341, 4.02866305823115260208026311973, 4.54747047727654709425165837113, 4.57283466723973742930082598553, 4.71867040930663527999360604692, 4.74558532804764279152745288850, 5.44844050455904940744911690523, 5.55108766592641729578118744814, 5.88426142744681422413003726991, 5.88500301737042743491089433190, 6.05351852560833262930926439572, 6.22625227185466288804829429416, 6.61305073222305456755872921900, 6.81125283867734505342876355094

Graph of the $Z$-function along the critical line