L(s) = 1 | + 8·5-s + 24·13-s + 8·17-s + 4·25-s + 136·29-s − 40·37-s − 8·41-s + 100·49-s − 88·53-s − 296·61-s + 192·65-s + 88·73-s + 64·85-s − 216·89-s − 328·97-s − 24·101-s + 440·109-s + 312·113-s + 140·121-s − 72·125-s + 127-s + 131-s + 137-s + 139-s + 1.08e3·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 8/5·5-s + 1.84·13-s + 8/17·17-s + 4/25·25-s + 4.68·29-s − 1.08·37-s − 0.195·41-s + 2.04·49-s − 1.66·53-s − 4.85·61-s + 2.95·65-s + 1.20·73-s + 0.752·85-s − 2.42·89-s − 3.38·97-s − 0.237·101-s + 4.03·109-s + 2.76·113-s + 1.15·121-s − 0.575·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 7.50·145-s + 0.00671·149-s + 0.00662·151-s + ⋯ |
Λ(s)=(=((228⋅38)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((228⋅38)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅38
|
Sign: |
1
|
Analytic conductor: |
970845. |
Root analytic conductor: |
5.60265 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅38, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
4.243985653 |
L(21) |
≈ |
4.243985653 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | D4 | (1−4T+22T2−4p2T3+p4T4)2 |
| 7 | D4×C2 | 1−100T2+5254T4−100p4T6+p8T8 |
| 11 | D4×C2 | 1−140T2+5382T4−140p4T6+p8T8 |
| 13 | D4 | (1−12T+342T2−12p2T3+p4T4)2 |
| 17 | D4 | (1−4T+454T2−4p2T3+p4T4)2 |
| 19 | D4×C2 | 1−780T2+402374T4−780p4T6+p8T8 |
| 23 | D4×C2 | 1−484T2+517894T4−484p4T6+p8T8 |
| 29 | D4 | (1−68T+2806T2−68p2T3+p4T4)2 |
| 31 | C22 | (1+126T2+p4T4)2 |
| 37 | D4 | (1+20T+1270T2+20p2T3+p4T4)2 |
| 41 | D4 | (1+4T+2854T2+4p2T3+p4T4)2 |
| 43 | D4×C2 | 1−2764T2+8710534T4−2764p4T6+p8T8 |
| 47 | D4×C2 | 1−7428T2+23258246T4−7428p4T6+p8T8 |
| 53 | D4 | (1+44T+6070T2+44p2T3+p4T4)2 |
| 59 | D4×C2 | 1−11020T2+52720774T4−11020p4T6+p8T8 |
| 61 | D4 | (1+148T+11350T2+148p2T3+p4T4)2 |
| 67 | D4×C2 | 1−11980T2+75342534T4−11980p4T6+p8T8 |
| 71 | D4×C2 | 1−18276T2+133865606T4−18276p4T6+p8T8 |
| 73 | D4 | (1−44T+9990T2−44p2T3+p4T4)2 |
| 79 | D4×C2 | 1−1028T2+28324230T4−1028p4T6+p8T8 |
| 83 | D4×C2 | 1−5452T2+97966918T4−5452p4T6+p8T8 |
| 89 | D4 | (1+108T+15558T2+108p2T3+p4T4)2 |
| 97 | D4 | (1+164T+22342T2+164p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.81125283867734505342876355094, −6.61305073222305456755872921900, −6.22625227185466288804829429416, −6.05351852560833262930926439572, −5.88500301737042743491089433190, −5.88426142744681422413003726991, −5.55108766592641729578118744814, −5.44844050455904940744911690523, −4.74558532804764279152745288850, −4.71867040930663527999360604692, −4.57283466723973742930082598553, −4.54747047727654709425165837113, −4.02866305823115260208026311973, −3.72953669468041300617525627341, −3.21816053225964689935714969684, −3.20836054977621608618266975002, −3.12690653441728753669752836101, −2.71064459419176726937569400257, −2.22552855246060675926367930578, −2.14941232133283821755671965146, −1.74243779977826900137093323558, −1.26569773991839882038636133384, −1.08885056622549555231427795650, −1.06390857272983656068718462499, −0.23695901959675035100910703579,
0.23695901959675035100910703579, 1.06390857272983656068718462499, 1.08885056622549555231427795650, 1.26569773991839882038636133384, 1.74243779977826900137093323558, 2.14941232133283821755671965146, 2.22552855246060675926367930578, 2.71064459419176726937569400257, 3.12690653441728753669752836101, 3.20836054977621608618266975002, 3.21816053225964689935714969684, 3.72953669468041300617525627341, 4.02866305823115260208026311973, 4.54747047727654709425165837113, 4.57283466723973742930082598553, 4.71867040930663527999360604692, 4.74558532804764279152745288850, 5.44844050455904940744911690523, 5.55108766592641729578118744814, 5.88426142744681422413003726991, 5.88500301737042743491089433190, 6.05351852560833262930926439572, 6.22625227185466288804829429416, 6.61305073222305456755872921900, 6.81125283867734505342876355094