L(s) = 1 | − 4·2-s − 4·3-s + 8·4-s + 8·5-s + 16·6-s − 12·7-s − 4·8-s − 6·9-s − 32·10-s − 4·11-s − 32·12-s + 8·13-s + 48·14-s − 32·15-s − 25·16-s + 24·18-s + 64·20-s + 48·21-s + 16·22-s + 16·24-s + 32·25-s − 32·26-s + 40·27-s − 96·28-s + 40·29-s + 128·30-s + 40·31-s + ⋯ |
L(s) = 1 | − 2·2-s − 4/3·3-s + 2·4-s + 8/5·5-s + 8/3·6-s − 1.71·7-s − 1/2·8-s − 2/3·9-s − 3.19·10-s − 0.363·11-s − 8/3·12-s + 8/13·13-s + 24/7·14-s − 2.13·15-s − 1.56·16-s + 4/3·18-s + 16/5·20-s + 16/7·21-s + 8/11·22-s + 2/3·24-s + 1.27·25-s − 1.23·26-s + 1.48·27-s − 3.42·28-s + 1.37·29-s + 4.26·30-s + 1.29·31-s + ⋯ |
Λ(s)=(=(28561s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=(28561s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28561
= 134
|
Sign: |
1
|
Analytic conductor: |
0.0157439 |
Root analytic conductor: |
0.595167 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28561, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.1095346018 |
L(21) |
≈ |
0.1095346018 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 13 | C22 | 1−8T+8pT2−8p2T3+p4T4 |
good | 2 | D4×C2 | 1+p2T+p3T2+p2T3−7T4+p4T5+p7T6+p8T7+p8T8 |
| 3 | D4 | (1+2T+p2T2+2p2T3+p4T4)2 |
| 5 | D4×C2 | 1−8T+32T2−224T3+1559T4−224p2T5+32p4T6−8p6T7+p8T8 |
| 7 | D4×C2 | 1+12T+72T2+744T3+7519T4+744p2T5+72p4T6+12p6T7+p8T8 |
| 11 | D4×C2 | 1+4T+8T2+172T3−2386T4+172p2T5+8p4T6+4p6T7+p8T8 |
| 17 | D4×C2 | 1−418T2+197763T4−418p4T6+p8T8 |
| 19 | C23 | 1+232162T4+p8T8 |
| 23 | D4×C2 | 1−56pT2+857778T4−56p5T6+p8T8 |
| 29 | D4 | (1−20T+1532T2−20p2T3+p4T4)2 |
| 31 | D4×C2 | 1−40T+800T2−39240T3+1924322T4−39240p2T5+800p4T6−40p6T7+p8T8 |
| 37 | D4×C2 | 1−40T+800T2−46560T3+2667767T4−46560p2T5+800p4T6−40p6T7+p8T8 |
| 41 | D4×C2 | 1−32T+512T2−57248T3+6389378T4−57248p2T5+512p4T6−32p6T7+p8T8 |
| 43 | D4×C2 | 1−6334T2+16708731T4−6334p4T6+p8T8 |
| 47 | D4×C2 | 1+4T+8T2−1736T3−6608737T4−1736p2T5+8p4T6+4p6T7+p8T8 |
| 53 | D4 | (1+40T+5768T2+40p2T3+p4T4)2 |
| 59 | D4×C2 | 1−56T+1568T2+2632T3−12442366T4+2632p2T5+1568p4T6−56p6T7+p8T8 |
| 61 | D4 | (1+148T+12878T2+148p2T3+p4T4)2 |
| 67 | D4×C2 | 1+84T+3528T2−155316T3−33332642T4−155316p2T5+3528p4T6+84p6T7+p8T8 |
| 71 | D4×C2 | 1−4pT+8p2T2−57112pT3+322400399T4−57112p3T5+8p6T6−4p7T7+p8T8 |
| 73 | C23 | 1+18164482T4+p8T8 |
| 79 | D4 | (1−32T+11528T2−32p2T3+p4T4)2 |
| 83 | D4×C2 | 1+52T+1352T2+271804T3+51880814T4+271804p2T5+1352p4T6+52p6T7+p8T8 |
| 89 | D4×C2 | 1−200T+20000T2−1908200T3+179436962T4−1908200p2T5+20000p4T6−200p6T7+p8T8 |
| 97 | D4×C2 | 1+68T+2312T2−801924T3−171375106T4−801924p2T5+2312p4T6+68p6T7+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.73267954907706978465117940994, −14.90831937210881891886498767921, −14.45109489363855657383888504907, −13.69557914963411258049827622329, −13.67826964445310405211522983516, −13.56268633963231116245228884102, −12.73477724760375199072324025869, −12.48767843173433937554344724520, −12.03463667937509193806138129804, −11.43954033197981425354098322200, −10.99395777799112031275258853299, −10.65636187705288183345272844949, −10.50876836275333162196408802027, −9.896974242426991948391952809843, −9.563996724071608323299871578343, −9.177307123611610263205322290920, −8.998398593171744386351339134601, −8.056957803555827474452859535269, −7.921204180954394322383080744709, −6.85874272103586218025205582972, −6.38261627920717730506117029383, −6.16404177135625374340439059988, −5.65990377670370487912622172668, −4.77450417013775926355845063463, −2.85218477777242428197479268848,
2.85218477777242428197479268848, 4.77450417013775926355845063463, 5.65990377670370487912622172668, 6.16404177135625374340439059988, 6.38261627920717730506117029383, 6.85874272103586218025205582972, 7.921204180954394322383080744709, 8.056957803555827474452859535269, 8.998398593171744386351339134601, 9.177307123611610263205322290920, 9.563996724071608323299871578343, 9.896974242426991948391952809843, 10.50876836275333162196408802027, 10.65636187705288183345272844949, 10.99395777799112031275258853299, 11.43954033197981425354098322200, 12.03463667937509193806138129804, 12.48767843173433937554344724520, 12.73477724760375199072324025869, 13.56268633963231116245228884102, 13.67826964445310405211522983516, 13.69557914963411258049827622329, 14.45109489363855657383888504907, 14.90831937210881891886498767921, 15.73267954907706978465117940994