L(s) = 1 | − 2·2-s − 4-s − 2·5-s + 4·7-s + 2·8-s + 4·10-s − 8·11-s − 2·13-s − 8·14-s + 8·16-s − 8·19-s + 2·20-s + 16·22-s + 4·23-s − 11·25-s + 4·26-s − 4·28-s − 8·29-s + 4·31-s − 10·32-s − 8·35-s − 4·37-s + 16·38-s − 4·40-s − 12·41-s − 2·43-s + 8·44-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1/2·4-s − 0.894·5-s + 1.51·7-s + 0.707·8-s + 1.26·10-s − 2.41·11-s − 0.554·13-s − 2.13·14-s + 2·16-s − 1.83·19-s + 0.447·20-s + 3.41·22-s + 0.834·23-s − 2.19·25-s + 0.784·26-s − 0.755·28-s − 1.48·29-s + 0.718·31-s − 1.76·32-s − 1.35·35-s − 0.657·37-s + 2.59·38-s − 0.632·40-s − 1.87·41-s − 0.304·43-s + 1.20·44-s + ⋯ |
Λ(s)=(=((38⋅74⋅234)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((38⋅74⋅234)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅74⋅234
|
Sign: |
1
|
Analytic conductor: |
17921.8 |
Root analytic conductor: |
3.40151 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 38⋅74⋅234, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C1 | (1−T)4 |
| 23 | C1 | (1−T)4 |
good | 2 | C2≀C2≀C2 | 1+pT+5T2+5pT3+13T4+5p2T5+5p2T6+p4T7+p4T8 |
| 5 | C2≀C2≀C2 | 1+2T+3pT2+24T3+101T4+24pT5+3p3T6+2p3T7+p4T8 |
| 11 | C2≀C2≀C2 | 1+8T+52T2+20pT3+829T4+20p2T5+52p2T6+8p3T7+p4T8 |
| 13 | C2≀C2≀C2 | 1+2T+17T2−8T3+55T4−8pT5+17p2T6+2p3T7+p4T8 |
| 17 | C2≀C2≀C2 | 1+50T2−16T3+67pT4−16pT5+50p2T6+p4T8 |
| 19 | C2≀C2≀C2 | 1+8T+70T2+336T3+1763T4+336pT5+70p2T6+8p3T7+p4T8 |
| 29 | C2≀C2≀C2 | 1+8T+110T2+640T3+4651T4+640pT5+110p2T6+8p3T7+p4T8 |
| 31 | C2≀C2≀C2 | 1−4T+52T2−420T3+1421T4−420pT5+52p2T6−4p3T7+p4T8 |
| 37 | C2≀C2≀C2 | 1+4T+20T2−180T3−1755T4−180pT5+20p2T6+4p3T7+p4T8 |
| 41 | C2≀C2≀C2 | 1+12T+84T2+604T3+4757T4+604pT5+84p2T6+12p3T7+p4T8 |
| 43 | C2≀C2≀C2 | 1+2T+131T2+264T3+7791T4+264pT5+131p2T6+2p3T7+p4T8 |
| 47 | C2≀C2≀C2 | 1+16T+156T2+1232T3+9222T4+1232pT5+156p2T6+16p3T7+p4T8 |
| 53 | C2≀C2≀C2 | 1−2T+135T2−272T3+9899T4−272pT5+135p2T6−2p3T7+p4T8 |
| 59 | C2≀C2≀C2 | 1+22T+237T2+1544T3+9747T4+1544pT5+237p2T6+22p3T7+p4T8 |
| 61 | C2≀C2≀C2 | 1−22T+333T2−3320T3+29001T4−3320pT5+333p2T6−22p3T7+p4T8 |
| 67 | C2≀C2≀C2 | 1+10T+225T2+1796T3+21059T4+1796pT5+225p2T6+10p3T7+p4T8 |
| 71 | C2≀C2≀C2 | 1+46T+1029T2+14628T3+145493T4+14628pT5+1029p2T6+46p3T7+p4T8 |
| 73 | C2≀C2≀C2 | 1+16T+316T2+3284T3+35053T4+3284pT5+316p2T6+16p3T7+p4T8 |
| 79 | C2≀C2≀C2 | 1−16T+196T2−1460T3+15037T4−1460pT5+196p2T6−16p3T7+p4T8 |
| 83 | C2≀C2≀C2 | 1−4T+90T2+1032T3−2269T4+1032pT5+90p2T6−4p3T7+p4T8 |
| 89 | C2≀C2≀C2 | 1+34T+671T2+9272T3+99277T4+9272pT5+671p2T6+34p3T7+p4T8 |
| 97 | C2≀C2≀C2 | 1+8T+110T2−1408T3−9381T4−1408pT5+110p2T6+8p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.51039557222115745086939640217, −7.19768271770094931055091007013, −6.89530605928380126533230829220, −6.71564651288330159033505106747, −6.38348899878331608097486707110, −6.08267645739920930578407308236, −5.83098624788739545112964869548, −5.55390386843500072023791192832, −5.54923108233996494949466598593, −5.31248194038059422200757493095, −4.95350728577447142796534848196, −4.89520264559482491669912567369, −4.56893867806062625997458280930, −4.28845297771897567160803456640, −4.18254929515750532470716379538, −3.97156600183317253188879815063, −3.53434126585843400620190006400, −3.28622703884232841217949607852, −3.06198789609993881235584252469, −2.77367237532757570553731331136, −2.39953716149398114765788171161, −2.24043287633578655260408926465, −1.62846200567657853501367336518, −1.47786163702019738409619452006, −1.32072307313678524800888992946, 0, 0, 0, 0,
1.32072307313678524800888992946, 1.47786163702019738409619452006, 1.62846200567657853501367336518, 2.24043287633578655260408926465, 2.39953716149398114765788171161, 2.77367237532757570553731331136, 3.06198789609993881235584252469, 3.28622703884232841217949607852, 3.53434126585843400620190006400, 3.97156600183317253188879815063, 4.18254929515750532470716379538, 4.28845297771897567160803456640, 4.56893867806062625997458280930, 4.89520264559482491669912567369, 4.95350728577447142796534848196, 5.31248194038059422200757493095, 5.54923108233996494949466598593, 5.55390386843500072023791192832, 5.83098624788739545112964869548, 6.08267645739920930578407308236, 6.38348899878331608097486707110, 6.71564651288330159033505106747, 6.89530605928380126533230829220, 7.19768271770094931055091007013, 7.51039557222115745086939640217