L(s) = 1 | + 2·4-s − 2·9-s + 2·11-s + 16-s + 4·29-s − 4·36-s + 4·44-s + 49-s − 2·64-s − 4·71-s − 2·79-s + 3·81-s − 4·99-s + 4·109-s + 8·116-s + 3·121-s + 127-s + 131-s + 137-s + 139-s − 2·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + ⋯ |
L(s) = 1 | + 2·4-s − 2·9-s + 2·11-s + 16-s + 4·29-s − 4·36-s + 4·44-s + 49-s − 2·64-s − 4·71-s − 2·79-s + 3·81-s − 4·99-s + 4·109-s + 8·116-s + 3·121-s + 127-s + 131-s + 137-s + 139-s − 2·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + ⋯ |
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
0.381725 |
Root analytic conductor: |
0.886581 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 38⋅58⋅74, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
2.063654534 |
L(21) |
≈ |
2.063654534 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+T2)2 |
| 5 | | 1 |
| 7 | C22 | 1−T2+T4 |
good | 2 | C22 | (1−T2+T4)2 |
| 11 | C1×C2 | (1−T)4(1+T+T2)2 |
| 13 | C2×C22 | (1+T2)2(1−T2+T4) |
| 17 | C22 | (1−T2+T4)2 |
| 19 | C1×C1 | (1−T)4(1+T)4 |
| 23 | C22 | (1−T2+T4)2 |
| 29 | C2 | (1−T+T2)4 |
| 31 | C2 | (1−T+T2)2(1+T+T2)2 |
| 37 | C2 | (1+T2)4 |
| 41 | C2 | (1−T+T2)2(1+T+T2)2 |
| 43 | C22 | (1−T2+T4)2 |
| 47 | C2×C22 | (1+T2)2(1−T2+T4) |
| 53 | C2 | (1+T2)4 |
| 59 | C2 | (1−T+T2)2(1+T+T2)2 |
| 61 | C2 | (1−T+T2)2(1+T+T2)2 |
| 67 | C22 | (1−T2+T4)2 |
| 71 | C2 | (1+T+T2)4 |
| 73 | C22 | (1−T2+T4)2 |
| 79 | C1×C2 | (1+T)4(1−T+T2)2 |
| 83 | C2×C22 | (1+T2)2(1−T2+T4) |
| 89 | C1×C1 | (1−T)4(1+T)4 |
| 97 | C2×C22 | (1+T2)2(1−T2+T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.04617732380829806092168981110, −6.51033319227279921106186720480, −6.37228678742432010156662628566, −6.36043914413746361929217544352, −6.30533529410754720474081293563, −5.79949499433153945011159035881, −5.79071754921210242733575081470, −5.77847644038558579992083573489, −5.19468295254110238710123648436, −4.82148606476732153881546481254, −4.72639573927937808472050199215, −4.67433901265314038003178145429, −4.14384563040902869233923008956, −4.02025632214192708359342399432, −3.88473803549106906982580107473, −3.22163759071610718594362779710, −3.01694497752613453450060376560, −2.98671574054719098737459256306, −2.89592097041120463039240858315, −2.57117304024433075536279854819, −2.05669390229901320017423026929, −1.98492320336306636557745181058, −1.65675978560010566305981127842, −1.07673924168719496661651400743, −0.933100740722115110091882544548,
0.933100740722115110091882544548, 1.07673924168719496661651400743, 1.65675978560010566305981127842, 1.98492320336306636557745181058, 2.05669390229901320017423026929, 2.57117304024433075536279854819, 2.89592097041120463039240858315, 2.98671574054719098737459256306, 3.01694497752613453450060376560, 3.22163759071610718594362779710, 3.88473803549106906982580107473, 4.02025632214192708359342399432, 4.14384563040902869233923008956, 4.67433901265314038003178145429, 4.72639573927937808472050199215, 4.82148606476732153881546481254, 5.19468295254110238710123648436, 5.77847644038558579992083573489, 5.79071754921210242733575081470, 5.79949499433153945011159035881, 6.30533529410754720474081293563, 6.36043914413746361929217544352, 6.37228678742432010156662628566, 6.51033319227279921106186720480, 7.04617732380829806092168981110