L(s) = 1 | + 2·4-s + 8·11-s + 3·16-s − 32·29-s − 8·41-s + 16·44-s − 2·49-s + 16·59-s + 24·61-s + 12·64-s + 8·71-s − 24·89-s + 40·101-s − 40·109-s − 64·116-s + 12·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s − 16·164-s + 167-s + 28·169-s + ⋯ |
L(s) = 1 | + 4-s + 2.41·11-s + 3/4·16-s − 5.94·29-s − 1.24·41-s + 2.41·44-s − 2/7·49-s + 2.08·59-s + 3.07·61-s + 3/2·64-s + 0.949·71-s − 2.54·89-s + 3.98·101-s − 3.83·109-s − 5.94·116-s + 1.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s − 1.24·164-s + 0.0773·167-s + 2.15·169-s + ⋯ |
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
25016.7 |
Root analytic conductor: |
3.54632 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 38⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7490275269 |
L(21) |
≈ |
0.7490275269 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
| 7 | C2 | (1+T2)2 |
good | 2 | D4×C2 | 1−pT2+T4−p3T6+p4T8 |
| 11 | D4 | (1−4T+18T2−4pT3+p2T4)2 |
| 13 | D4×C2 | 1−28T2+406T4−28p2T6+p4T8 |
| 17 | C4×C2 | 1+4T2+70T4+4p2T6+p4T8 |
| 19 | C22 | (1+30T2+p2T4)2 |
| 23 | D4×C2 | 1−20T2+646T4−20p2T6+p4T8 |
| 29 | C2 | (1+8T+pT2)4 |
| 31 | C22 | (1−10T2+p2T4)2 |
| 37 | C22 | (1−38T2+p2T4)2 |
| 41 | D4 | (1+4T+54T2+4pT3+p2T4)2 |
| 43 | D4×C2 | 1−76T2+3094T4−76p2T6+p4T8 |
| 47 | C22 | (1−78T2+p2T4)2 |
| 53 | D4×C2 | 1−68T2+4726T4−68p2T6+p4T8 |
| 59 | C2 | (1−4T+pT2)4 |
| 61 | C2 | (1−6T+pT2)4 |
| 67 | D4×C2 | 1+20T2+886T4+20p2T6+p4T8 |
| 71 | D4 | (1−4T+74T2−4pT3+p2T4)2 |
| 73 | D4×C2 | 1+116T2+10822T4+116p2T6+p4T8 |
| 79 | C22 | (1+126T2+p2T4)2 |
| 83 | C22 | (1−102T2+p2T4)2 |
| 89 | C4 | (1+12T+86T2+12pT3+p2T4)2 |
| 97 | D4×C2 | 1−300T2+40166T4−300p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.85329403574493223044627047580, −6.46427732159324793843380970929, −6.31360344724133285924808681745, −6.27973680996660126595340740270, −5.81607308120844197657008752173, −5.50007349180539755116699059936, −5.41517212914690456979566204726, −5.39180608208496519223926105476, −5.26962678418123954728303725645, −4.58633996598587717213865152763, −4.57439908541044768565528067486, −3.98968959882373509877399624182, −3.87221734926877695632809105934, −3.85375577704468597653801541684, −3.57633060670762066066954313065, −3.38448795743330742643513596726, −3.33188895437703631700515446817, −2.44846236965363946029852847867, −2.36683198387829876158923926619, −2.17290118948740712111499433321, −2.05219627483637834166423560279, −1.41633441648611835895558654391, −1.21098970600976099045330974551, −1.20701618278576920330468950728, −0.13883502307462636961419284135,
0.13883502307462636961419284135, 1.20701618278576920330468950728, 1.21098970600976099045330974551, 1.41633441648611835895558654391, 2.05219627483637834166423560279, 2.17290118948740712111499433321, 2.36683198387829876158923926619, 2.44846236965363946029852847867, 3.33188895437703631700515446817, 3.38448795743330742643513596726, 3.57633060670762066066954313065, 3.85375577704468597653801541684, 3.87221734926877695632809105934, 3.98968959882373509877399624182, 4.57439908541044768565528067486, 4.58633996598587717213865152763, 5.26962678418123954728303725645, 5.39180608208496519223926105476, 5.41517212914690456979566204726, 5.50007349180539755116699059936, 5.81607308120844197657008752173, 6.27973680996660126595340740270, 6.31360344724133285924808681745, 6.46427732159324793843380970929, 6.85329403574493223044627047580