L(s) = 1 | + 4-s + 4·11-s + 4·16-s + 4·19-s − 8·29-s + 32·41-s + 4·44-s − 2·49-s − 12·59-s − 8·61-s + 11·64-s + 20·71-s + 4·76-s − 16·79-s + 4·89-s + 44·101-s − 28·109-s − 8·116-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 1.20·11-s + 16-s + 0.917·19-s − 1.48·29-s + 4.99·41-s + 0.603·44-s − 2/7·49-s − 1.56·59-s − 1.02·61-s + 11/8·64-s + 2.37·71-s + 0.458·76-s − 1.80·79-s + 0.423·89-s + 4.37·101-s − 2.68·109-s − 0.742·116-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((38⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
25016.7 |
Root analytic conductor: |
3.54632 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 38⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.717783937 |
L(21) |
≈ |
6.717783937 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
| 7 | C2 | (1+T2)2 |
good | 2 | C23 | 1−T2−3T4−p2T6+p4T8 |
| 11 | D4 | (1−2T+3T2−2pT3+p2T4)2 |
| 13 | D4×C2 | 1−24T2+302T4−24p2T6+p4T8 |
| 17 | D4×C2 | 1+24T2+542T4+24p2T6+p4T8 |
| 19 | D4 | (1−2T+34T2−2pT3+p2T4)2 |
| 23 | C22 | (1−21T2+p2T4)2 |
| 29 | D4 | (1+4T+17T2+4pT3+p2T4)2 |
| 31 | C22 | (1+42T2+p2T4)2 |
| 37 | D4×C2 | 1−106T2+5467T4−106p2T6+p4T8 |
| 41 | C2 | (1−8T+pT2)4 |
| 43 | D4×C2 | 1−90T2+5003T4−90p2T6+p4T8 |
| 47 | D4×C2 | 1−128T2+8014T4−128p2T6+p4T8 |
| 53 | D4×C2 | 1−140T2+9238T4−140p2T6+p4T8 |
| 59 | D4 | (1+6T+122T2+6pT3+p2T4)2 |
| 61 | C4 | (1+4T−54T2+4pT3+p2T4)2 |
| 67 | D4×C2 | 1−146T2+11427T4−146p2T6+p4T8 |
| 71 | D4 | (1−10T+147T2−10pT3+p2T4)2 |
| 73 | D4×C2 | 1−280T2+30238T4−280p2T6+p4T8 |
| 79 | D4 | (1+8T+169T2+8pT3+p2T4)2 |
| 83 | D4×C2 | 1−164T2+15382T4−164p2T6+p4T8 |
| 89 | D4 | (1−2T+134T2−2pT3+p2T4)2 |
| 97 | D4×C2 | 1−220T2+25798T4−220p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.66775877760117130316455019265, −6.45480615872481844068539469859, −6.34974036175935273526693388067, −5.92866862813531010306566049673, −5.87415673104109862394886780134, −5.66944446697626137799834121124, −5.63997373239414771027463612164, −5.34859652009435925288220791751, −4.78898438152016987874951457191, −4.78525810740197747572049804826, −4.46162774579540810516331311285, −4.34571021059678637956435594192, −3.84825982488302644449214904540, −3.80661502230138959441136690908, −3.72067825028549213059396977759, −3.14145689669036212522323250713, −2.98185496620450859873366681031, −2.95901320591853251336578272933, −2.46882613788769181569860949530, −2.09217666317653287541762538032, −1.77616513749157110934777767466, −1.76052177084507313596685554946, −1.05143298270179940859915631036, −0.878081353727540340863022067729, −0.56978616255180607244449838896,
0.56978616255180607244449838896, 0.878081353727540340863022067729, 1.05143298270179940859915631036, 1.76052177084507313596685554946, 1.77616513749157110934777767466, 2.09217666317653287541762538032, 2.46882613788769181569860949530, 2.95901320591853251336578272933, 2.98185496620450859873366681031, 3.14145689669036212522323250713, 3.72067825028549213059396977759, 3.80661502230138959441136690908, 3.84825982488302644449214904540, 4.34571021059678637956435594192, 4.46162774579540810516331311285, 4.78525810740197747572049804826, 4.78898438152016987874951457191, 5.34859652009435925288220791751, 5.63997373239414771027463612164, 5.66944446697626137799834121124, 5.87415673104109862394886780134, 5.92866862813531010306566049673, 6.34974036175935273526693388067, 6.45480615872481844068539469859, 6.66775877760117130316455019265