Properties

Label 8-1575e4-1.1-c1e4-0-14
Degree $8$
Conductor $6.154\times 10^{12}$
Sign $1$
Analytic cond. $25016.7$
Root an. cond. $3.54632$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·11-s + 4·16-s + 4·19-s − 8·29-s + 32·41-s + 4·44-s − 2·49-s − 12·59-s − 8·61-s + 11·64-s + 20·71-s + 4·76-s − 16·79-s + 4·89-s + 44·101-s − 28·109-s − 8·116-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.20·11-s + 16-s + 0.917·19-s − 1.48·29-s + 4.99·41-s + 0.603·44-s − 2/7·49-s − 1.56·59-s − 1.02·61-s + 11/8·64-s + 2.37·71-s + 0.458·76-s − 1.80·79-s + 0.423·89-s + 4.37·101-s − 2.68·109-s − 0.742·116-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(25016.7\)
Root analytic conductor: \(3.54632\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.717783937\)
\(L(\frac12)\) \(\approx\) \(6.717783937\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2^3$ \( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - 2 T + 3 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 24 T^{2} + 302 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 24 T^{2} + 542 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 2 T + 34 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 21 T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 4 T + 17 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 42 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 106 T^{2} + 5467 T^{4} - 106 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
43$D_4\times C_2$ \( 1 - 90 T^{2} + 5003 T^{4} - 90 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 128 T^{2} + 8014 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 140 T^{2} + 9238 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 6 T + 122 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_4$ \( ( 1 + 4 T - 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 146 T^{2} + 11427 T^{4} - 146 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 10 T + 147 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 280 T^{2} + 30238 T^{4} - 280 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 8 T + 169 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 164 T^{2} + 15382 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 2 T + 134 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 220 T^{2} + 25798 T^{4} - 220 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.66775877760117130316455019265, −6.45480615872481844068539469859, −6.34974036175935273526693388067, −5.92866862813531010306566049673, −5.87415673104109862394886780134, −5.66944446697626137799834121124, −5.63997373239414771027463612164, −5.34859652009435925288220791751, −4.78898438152016987874951457191, −4.78525810740197747572049804826, −4.46162774579540810516331311285, −4.34571021059678637956435594192, −3.84825982488302644449214904540, −3.80661502230138959441136690908, −3.72067825028549213059396977759, −3.14145689669036212522323250713, −2.98185496620450859873366681031, −2.95901320591853251336578272933, −2.46882613788769181569860949530, −2.09217666317653287541762538032, −1.77616513749157110934777767466, −1.76052177084507313596685554946, −1.05143298270179940859915631036, −0.878081353727540340863022067729, −0.56978616255180607244449838896, 0.56978616255180607244449838896, 0.878081353727540340863022067729, 1.05143298270179940859915631036, 1.76052177084507313596685554946, 1.77616513749157110934777767466, 2.09217666317653287541762538032, 2.46882613788769181569860949530, 2.95901320591853251336578272933, 2.98185496620450859873366681031, 3.14145689669036212522323250713, 3.72067825028549213059396977759, 3.80661502230138959441136690908, 3.84825982488302644449214904540, 4.34571021059678637956435594192, 4.46162774579540810516331311285, 4.78525810740197747572049804826, 4.78898438152016987874951457191, 5.34859652009435925288220791751, 5.63997373239414771027463612164, 5.66944446697626137799834121124, 5.87415673104109862394886780134, 5.92866862813531010306566049673, 6.34974036175935273526693388067, 6.45480615872481844068539469859, 6.66775877760117130316455019265

Graph of the $Z$-function along the critical line