L(s) = 1 | − 12·9-s + 10·25-s − 4·29-s + 28·41-s − 18·49-s + 90·81-s − 68·101-s − 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | − 4·9-s + 2·25-s − 0.742·29-s + 4.37·41-s − 2.57·49-s + 10·81-s − 6.76·101-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯ |
Λ(s)=(=((216⋅54⋅234)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅54⋅234)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅54⋅234
|
Sign: |
1
|
Analytic conductor: |
46599.3 |
Root analytic conductor: |
3.83307 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅54⋅234, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5799134993 |
L(21) |
≈ |
0.5799134993 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | (1−pT2)2 |
| 23 | C2 | (1+pT2)2 |
good | 3 | C2 | (1+pT2)4 |
| 7 | C22 | (1+9T2+p2T4)2 |
| 11 | C2 | (1+pT2)4 |
| 13 | C2 | (1−pT2)4 |
| 17 | C22 | (1−11T2+p2T4)2 |
| 19 | C2 | (1+pT2)4 |
| 29 | C2 | (1+T+pT2)4 |
| 31 | C2 | (1−3T+pT2)2(1+3T+pT2)2 |
| 37 | C22 | (1−51T2+p2T4)2 |
| 41 | C2 | (1−7T+pT2)4 |
| 43 | C22 | (1+6T2+p2T4)2 |
| 47 | C2 | (1+pT2)4 |
| 53 | C22 | (1+101T2+p2T4)2 |
| 59 | C2 | (1−11T+pT2)2(1+11T+pT2)2 |
| 61 | C2 | (1−pT2)4 |
| 67 | C22 | (1−111T2+p2T4)2 |
| 71 | C2 | (1−13T+pT2)2(1+13T+pT2)2 |
| 73 | C2 | (1−pT2)4 |
| 79 | C2 | (1+pT2)4 |
| 83 | C22 | (1+41T2+p2T4)2 |
| 89 | C2 | (1−pT2)4 |
| 97 | C22 | (1+174T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.52961426973584903350051045367, −6.39579841569836241510412957599, −6.01355556371422401659337887503, −5.93768865842394703826656149652, −5.75400720650370483794534513802, −5.60355237382305888174986188154, −5.26697566067275251932336283458, −5.17440272046197004690524038794, −4.92102137460758926290670495276, −4.90585800555690236179413115686, −4.28052466665405014407299457043, −4.15520192472543363413458049992, −3.90370225711260711889642521196, −3.78972420525058776239612961414, −3.20865053416013096390314620718, −3.12958522663944159721637292391, −2.79627492392428518324473270068, −2.72573984853211976124527586517, −2.66608284446246635060198402759, −2.35757200429384525315937316916, −1.84641117177676497775036772275, −1.52126339665491535471055152381, −1.02157955402819838808504326641, −0.66524876698138781753772870351, −0.18383230437144955010962535026,
0.18383230437144955010962535026, 0.66524876698138781753772870351, 1.02157955402819838808504326641, 1.52126339665491535471055152381, 1.84641117177676497775036772275, 2.35757200429384525315937316916, 2.66608284446246635060198402759, 2.72573984853211976124527586517, 2.79627492392428518324473270068, 3.12958522663944159721637292391, 3.20865053416013096390314620718, 3.78972420525058776239612961414, 3.90370225711260711889642521196, 4.15520192472543363413458049992, 4.28052466665405014407299457043, 4.90585800555690236179413115686, 4.92102137460758926290670495276, 5.17440272046197004690524038794, 5.26697566067275251932336283458, 5.60355237382305888174986188154, 5.75400720650370483794534513802, 5.93768865842394703826656149652, 6.01355556371422401659337887503, 6.39579841569836241510412957599, 6.52961426973584903350051045367