L(s) = 1 | + 8·5-s − 12·13-s + 20·17-s + 38·25-s − 24·29-s − 12·37-s − 32·41-s − 20·53-s − 96·65-s − 20·73-s − 81-s + 160·85-s + 12·97-s − 16·109-s + 28·113-s + 20·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s − 192·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 3.57·5-s − 3.32·13-s + 4.85·17-s + 38/5·25-s − 4.45·29-s − 1.97·37-s − 4.99·41-s − 2.74·53-s − 11.9·65-s − 2.34·73-s − 1/9·81-s + 17.3·85-s + 1.21·97-s − 1.53·109-s + 2.63·113-s + 1.81·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 15.9·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((228⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((228⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
55247.5 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.2500037663 |
L(21) |
≈ |
0.2500037663 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+T4 |
| 5 | C2 | (1−4T+pT2)2 |
good | 7 | C23 | 1−94T4+p4T8 |
| 11 | C22 | (1−10T2+p2T4)2 |
| 13 | C22 | (1+6T+18T2+6pT3+p2T4)2 |
| 17 | C2 | (1−8T+pT2)2(1−2T+pT2)2 |
| 19 | C2 | (1−pT2)4 |
| 23 | C23 | 1−158T4+p4T8 |
| 29 | C2 | (1+6T+pT2)4 |
| 31 | C22 | (1−30T2+p2T4)2 |
| 37 | C22 | (1+6T+18T2+6pT3+p2T4)2 |
| 41 | C2 | (1+8T+pT2)4 |
| 43 | C23 | 1+1202T4+p4T8 |
| 47 | C23 | 1−1918T4+p4T8 |
| 53 | C2 | (1−4T+pT2)2(1+14T+pT2)2 |
| 59 | C2 | (1−pT2)4 |
| 61 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 67 | C23 | 1+4946T4+p4T8 |
| 71 | C22 | (1−110T2+p2T4)2 |
| 73 | C2 | (1−6T+pT2)2(1+16T+pT2)2 |
| 79 | C2 | (1+pT2)4 |
| 83 | C23 | 1−13294T4+p4T8 |
| 89 | C2 | (1−pT2)4 |
| 97 | C22 | (1−6T+18T2−6pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.61568626765287622981600276759, −6.12216550651505874121068326797, −6.07278344419823668271149195784, −5.73463678624474268412850840589, −5.63946340764097627956386226692, −5.54239247078673681291059626217, −5.30047454010301453138406881305, −5.17215632767617599661915582820, −4.97271564187281920565508706509, −4.92146738121244052351036185268, −4.67515599524343816682096514028, −4.22956014479475581733902520196, −3.64171354712622111871275206164, −3.51518665897926578158381286700, −3.27647525801721334203075121597, −3.19351118537316870345001659675, −2.96028370757907681607453039673, −2.70681415432186837393293066592, −2.07575371651784362521431630525, −2.01937466697292819524265259815, −1.75926320571486989965816483907, −1.75125544801927630172107883135, −1.39330709911579664665272738313, −1.03228913426012835381701440636, −0.06610330703651128282527983553,
0.06610330703651128282527983553, 1.03228913426012835381701440636, 1.39330709911579664665272738313, 1.75125544801927630172107883135, 1.75926320571486989965816483907, 2.01937466697292819524265259815, 2.07575371651784362521431630525, 2.70681415432186837393293066592, 2.96028370757907681607453039673, 3.19351118537316870345001659675, 3.27647525801721334203075121597, 3.51518665897926578158381286700, 3.64171354712622111871275206164, 4.22956014479475581733902520196, 4.67515599524343816682096514028, 4.92146738121244052351036185268, 4.97271564187281920565508706509, 5.17215632767617599661915582820, 5.30047454010301453138406881305, 5.54239247078673681291059626217, 5.63946340764097627956386226692, 5.73463678624474268412850840589, 6.07278344419823668271149195784, 6.12216550651505874121068326797, 6.61568626765287622981600276759