Properties

Label 8-1920e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.359\times 10^{13}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 12·13-s + 20·17-s + 38·25-s − 24·29-s − 12·37-s − 32·41-s − 20·53-s − 96·65-s − 20·73-s − 81-s + 160·85-s + 12·97-s − 16·109-s + 28·113-s + 20·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s − 192·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 3.57·5-s − 3.32·13-s + 4.85·17-s + 38/5·25-s − 4.45·29-s − 1.97·37-s − 4.99·41-s − 2.74·53-s − 11.9·65-s − 2.34·73-s − 1/9·81-s + 17.3·85-s + 1.21·97-s − 1.53·109-s + 2.63·113-s + 1.81·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 15.9·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2500037663\)
\(L(\frac12)\) \(\approx\) \(0.2500037663\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + T^{4} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good7$C_2^3$ \( 1 - 94 T^{4} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
43$C_2^3$ \( 1 + 1202 T^{4} + p^{4} T^{8} \)
47$C_2^3$ \( 1 - 1918 T^{4} + p^{4} T^{8} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^3$ \( 1 + 4946 T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^3$ \( 1 - 13294 T^{4} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.61568626765287622981600276759, −6.12216550651505874121068326797, −6.07278344419823668271149195784, −5.73463678624474268412850840589, −5.63946340764097627956386226692, −5.54239247078673681291059626217, −5.30047454010301453138406881305, −5.17215632767617599661915582820, −4.97271564187281920565508706509, −4.92146738121244052351036185268, −4.67515599524343816682096514028, −4.22956014479475581733902520196, −3.64171354712622111871275206164, −3.51518665897926578158381286700, −3.27647525801721334203075121597, −3.19351118537316870345001659675, −2.96028370757907681607453039673, −2.70681415432186837393293066592, −2.07575371651784362521431630525, −2.01937466697292819524265259815, −1.75926320571486989965816483907, −1.75125544801927630172107883135, −1.39330709911579664665272738313, −1.03228913426012835381701440636, −0.06610330703651128282527983553, 0.06610330703651128282527983553, 1.03228913426012835381701440636, 1.39330709911579664665272738313, 1.75125544801927630172107883135, 1.75926320571486989965816483907, 2.01937466697292819524265259815, 2.07575371651784362521431630525, 2.70681415432186837393293066592, 2.96028370757907681607453039673, 3.19351118537316870345001659675, 3.27647525801721334203075121597, 3.51518665897926578158381286700, 3.64171354712622111871275206164, 4.22956014479475581733902520196, 4.67515599524343816682096514028, 4.92146738121244052351036185268, 4.97271564187281920565508706509, 5.17215632767617599661915582820, 5.30047454010301453138406881305, 5.54239247078673681291059626217, 5.63946340764097627956386226692, 5.73463678624474268412850840589, 6.07278344419823668271149195784, 6.12216550651505874121068326797, 6.61568626765287622981600276759

Graph of the $Z$-function along the critical line