Properties

Label 8-1920e4-1.1-c1e4-0-5
Degree $8$
Conductor $135895.450\times 10^{8}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s − 4·7-s + 2·9-s + 8·13-s + 8·15-s − 8·17-s − 8·19-s + 8·21-s + 2·25-s − 6·27-s + 16·35-s − 24·37-s − 16·39-s − 8·45-s − 8·49-s + 16·51-s + 16·57-s − 8·63-s − 32·65-s − 4·75-s + 11·81-s + 12·83-s + 32·85-s − 32·91-s + 32·95-s + 32·101-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s − 1.51·7-s + 2/3·9-s + 2.21·13-s + 2.06·15-s − 1.94·17-s − 1.83·19-s + 1.74·21-s + 2/5·25-s − 1.15·27-s + 2.70·35-s − 3.94·37-s − 2.56·39-s − 1.19·45-s − 8/7·49-s + 2.24·51-s + 2.11·57-s − 1.00·63-s − 3.96·65-s − 0.461·75-s + 11/9·81-s + 1.31·83-s + 3.47·85-s − 3.35·91-s + 3.28·95-s + 3.18·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.07562180172\)
\(L(\frac12)\) \(\approx\) \(0.07562180172\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
good7$D_{4}$ \( ( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 - 4 T + 10 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 80 T^{2} + 2638 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
31$C_4\times C_2$ \( 1 - 76 T^{2} + 3046 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 + 12 T + 90 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 64 T^{2} + 3742 T^{4} - 64 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 80 T^{2} + 5038 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 52 T^{2} + 2998 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 128 T^{2} + 8574 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$D_4\times C_2$ \( 1 - 100 T^{2} + 8038 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 204 T^{2} + 20006 T^{4} - 204 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 6 T + 50 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 114 T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 196 T^{2} + 23302 T^{4} - 196 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52211982496569215610738779668, −6.50405224968986190626471867064, −6.37568268827427035038902799427, −5.80660121952352394802535089679, −5.80213177917306486313438171353, −5.56493272807924006166457090284, −5.43821716337003280411871969304, −4.90076460901012061773843165093, −4.75621365085638684658952130187, −4.62855873528324580411610889894, −4.37142055357000575672811179246, −4.13271124916776380689088033413, −3.77822380228752773342998721276, −3.68038995722779402458139277682, −3.53417922306261054969677734272, −3.42624119283966729587300551481, −3.19993331502472225196442097619, −2.66806962355898017103246054473, −2.33119268148321605330572802028, −2.05576500429050122653053643896, −1.65209907119912943721267385622, −1.62477496664293442295210721671, −0.956765282153551266667044222471, −0.32758658200646278590944924021, −0.14537017013971243800965563307, 0.14537017013971243800965563307, 0.32758658200646278590944924021, 0.956765282153551266667044222471, 1.62477496664293442295210721671, 1.65209907119912943721267385622, 2.05576500429050122653053643896, 2.33119268148321605330572802028, 2.66806962355898017103246054473, 3.19993331502472225196442097619, 3.42624119283966729587300551481, 3.53417922306261054969677734272, 3.68038995722779402458139277682, 3.77822380228752773342998721276, 4.13271124916776380689088033413, 4.37142055357000575672811179246, 4.62855873528324580411610889894, 4.75621365085638684658952130187, 4.90076460901012061773843165093, 5.43821716337003280411871969304, 5.56493272807924006166457090284, 5.80213177917306486313438171353, 5.80660121952352394802535089679, 6.37568268827427035038902799427, 6.50405224968986190626471867064, 6.52211982496569215610738779668

Graph of the $Z$-function along the critical line