Properties

Label 8-20e8-1.1-c1e4-0-5
Degree 88
Conductor 2560000000025600000000
Sign 11
Analytic cond. 104.075104.075
Root an. cond. 1.787181.78718
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 2·3-s + 8·4-s + 8·6-s − 8·8-s + 2·9-s + 6·11-s − 16·12-s + 4·13-s − 4·16-s + 8·17-s − 8·18-s + 6·19-s − 24·22-s + 16·24-s − 16·26-s + 4·27-s + 8·29-s + 4·31-s + 32·32-s − 12·33-s − 32·34-s + 16·36-s − 16·37-s − 24·38-s − 8·39-s + 4·43-s + ⋯
L(s)  = 1  − 2.82·2-s − 1.15·3-s + 4·4-s + 3.26·6-s − 2.82·8-s + 2/3·9-s + 1.80·11-s − 4.61·12-s + 1.10·13-s − 16-s + 1.94·17-s − 1.88·18-s + 1.37·19-s − 5.11·22-s + 3.26·24-s − 3.13·26-s + 0.769·27-s + 1.48·29-s + 0.718·31-s + 5.65·32-s − 2.08·33-s − 5.48·34-s + 8/3·36-s − 2.63·37-s − 3.89·38-s − 1.28·39-s + 0.609·43-s + ⋯

Functional equation

Λ(s)=((21658)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((21658)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 216582^{16} \cdot 5^{8}
Sign: 11
Analytic conductor: 104.075104.075
Root analytic conductor: 1.787181.78718
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 21658, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{16} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 0.59314470070.5931447007
L(12)L(\frac12) \approx 0.59314470070.5931447007
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)Isogeny Class over Fp\mathbf{F}_p
bad2C2C_2 (1+pT+pT2)2 ( 1 + p T + p T^{2} )^{2}
5 1 1
good3C2C_2×\timesC22C_2^2 (1+T+pT2)2(15T2+p2T4) ( 1 + T + p T^{2} )^{2}( 1 - 5 T^{2} + p^{2} T^{4} ) 4.3.c_c_ae_ar
7D4×C2D_4\times C_2 14T2+58T44p2T6+p4T8 1 - 4 T^{2} + 58 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} 4.7.a_ae_a_cg
11D4×C2D_4\times C_2 16T+18T260T3+199T460pT5+18p2T66p3T7+p4T8 1 - 6 T + 18 T^{2} - 60 T^{3} + 199 T^{4} - 60 p T^{5} + 18 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} 4.11.ag_s_aci_hr
13D4×C2D_4\times C_2 14T+8T2+28T3302T4+28pT5+8p2T64p3T7+p4T8 1 - 4 T + 8 T^{2} + 28 T^{3} - 302 T^{4} + 28 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} 4.13.ae_i_bc_alq
17D4D_{4} (14T+27T24pT3+p2T4)2 ( 1 - 4 T + 27 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} 4.17.ai_cs_ano_ctf
19D4×C2D_4\times C_2 16T+18T2108T3+647T4108pT5+18p2T66p3T7+p4T8 1 - 6 T + 18 T^{2} - 108 T^{3} + 647 T^{4} - 108 p T^{5} + 18 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} 4.19.ag_s_aee_yx
23D4×C2D_4\times C_2 152T2+1338T452p2T6+p4T8 1 - 52 T^{2} + 1338 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} 4.23.a_aca_a_bzm
29C22C_2^2 (14T+8T24pT3+p2T4)2 ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} 4.29.ai_bg_alk_dyw
31D4D_{4} (12T+52T22pT3+p2T4)2 ( 1 - 2 T + 52 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} 4.31.ae_ee_amu_hfm
37D4×C2D_4\times C_2 1+16T+128T2+752T3+4318T4+752pT5+128p2T6+16p3T7+p4T8 1 + 16 T + 128 T^{2} + 752 T^{3} + 4318 T^{4} + 752 p T^{5} + 128 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} 4.37.q_ey_bcy_gkc
41C22C_2^2 (157T2+p2T4)2 ( 1 - 57 T^{2} + p^{2} T^{4} )^{2} 4.41.a_aek_a_juh
43D4×C2D_4\times C_2 14T+8T2+4pT32p2T4+4p2T5+8p2T64p3T7+p4T8 1 - 4 T + 8 T^{2} + 4 p T^{3} - 2 p^{2} T^{4} + 4 p^{2} T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} 4.43.ae_i_gq_afmg
47C2C_2 (18T+pT2)4 ( 1 - 8 T + p T^{2} )^{4} 4.47.abg_wa_ajsi_dbbq
53C23C_2^3 1+1438T4+p4T8 1 + 1438 T^{4} + p^{4} T^{8} 4.53.a_a_a_cdi
59D4×C2D_4\times C_2 18T+32T2360T3+3854T4360pT5+32p2T68p3T7+p4T8 1 - 8 T + 32 T^{2} - 360 T^{3} + 3854 T^{4} - 360 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} 4.59.ai_bg_anw_fsg
61D4×C2D_4\times C_2 112T+72T2+108T34738T4+108pT5+72p2T612p3T7+p4T8 1 - 12 T + 72 T^{2} + 108 T^{3} - 4738 T^{4} + 108 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} 4.61.am_cu_ee_ahag
67D4×C2D_4\times C_2 1+30T+450T2+5220T3+49103T4+5220pT5+450p2T6+30p3T7+p4T8 1 + 30 T + 450 T^{2} + 5220 T^{3} + 49103 T^{4} + 5220 p T^{5} + 450 p^{2} T^{6} + 30 p^{3} T^{7} + p^{4} T^{8} 4.67.be_ri_hsu_cuqp
71D4×C2D_4\times C_2 1188T2+18214T4188p2T6+p4T8 1 - 188 T^{2} + 18214 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} 4.71.a_ahg_a_bayo
73D4×C2D_4\times C_2 170T2+7483T470p2T6+p4T8 1 - 70 T^{2} + 7483 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} 4.73.a_acs_a_lbv
79D4D_{4} (12T+148T22pT3+p2T4)2 ( 1 - 2 T + 148 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} 4.79.ae_lo_abiy_bzuw
83D4×C2D_4\times C_2 122T+242T23036T3+35063T43036pT5+242p2T622p3T7+p4T8 1 - 22 T + 242 T^{2} - 3036 T^{3} + 35063 T^{4} - 3036 p T^{5} + 242 p^{2} T^{6} - 22 p^{3} T^{7} + p^{4} T^{8} 4.83.aw_ji_aemu_bzwp
89D4×C2D_4\times C_2 186T2+3435T486p2T6+p4T8 1 - 86 T^{2} + 3435 T^{4} - 86 p^{2} T^{6} + p^{4} T^{8} 4.89.a_adi_a_fcd
97C22C_2^2 (1+150T2+p2T4)2 ( 1 + 150 T^{2} + p^{2} T^{4} )^{2} 4.97.a_lo_a_cjde
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.379962157056382291436883757890, −7.74688146716074226541689682474, −7.73760545097658337390851717339, −7.64410973305022098086438252038, −7.24254328040066159019561178917, −7.07412179564542852607016486749, −6.75373015284628119856514899684, −6.52864255387290912487410046196, −6.47362833642957498703992632024, −5.84955239770017212112471238498, −5.78441480650827764211035425254, −5.64290144240409760875496240929, −5.07635353255458939204698659288, −4.78067929007260748573436189825, −4.72069258549140689406239649492, −3.94836274476933997587892634598, −3.90692434001507114955212768179, −3.73068976830149818420888343179, −3.00081411423370612210622339578, −2.83111584436372240333552056504, −2.16761262225022100877252567896, −1.73709995370689421958360416190, −1.02974067913352657908585656083, −0.984444985671682020464278245201, −0.906736594402918891811455148430, 0.906736594402918891811455148430, 0.984444985671682020464278245201, 1.02974067913352657908585656083, 1.73709995370689421958360416190, 2.16761262225022100877252567896, 2.83111584436372240333552056504, 3.00081411423370612210622339578, 3.73068976830149818420888343179, 3.90692434001507114955212768179, 3.94836274476933997587892634598, 4.72069258549140689406239649492, 4.78067929007260748573436189825, 5.07635353255458939204698659288, 5.64290144240409760875496240929, 5.78441480650827764211035425254, 5.84955239770017212112471238498, 6.47362833642957498703992632024, 6.52864255387290912487410046196, 6.75373015284628119856514899684, 7.07412179564542852607016486749, 7.24254328040066159019561178917, 7.64410973305022098086438252038, 7.73760545097658337390851717339, 7.74688146716074226541689682474, 8.379962157056382291436883757890

Graph of the ZZ-function along the critical line