L(s) = 1 | − 4·2-s − 2·3-s + 8·4-s + 8·6-s − 8·8-s + 2·9-s + 6·11-s − 16·12-s + 4·13-s − 4·16-s + 8·17-s − 8·18-s + 6·19-s − 24·22-s + 16·24-s − 16·26-s + 4·27-s + 8·29-s + 4·31-s + 32·32-s − 12·33-s − 32·34-s + 16·36-s − 16·37-s − 24·38-s − 8·39-s + 4·43-s + ⋯ |
L(s) = 1 | − 2.82·2-s − 1.15·3-s + 4·4-s + 3.26·6-s − 2.82·8-s + 2/3·9-s + 1.80·11-s − 4.61·12-s + 1.10·13-s − 16-s + 1.94·17-s − 1.88·18-s + 1.37·19-s − 5.11·22-s + 3.26·24-s − 3.13·26-s + 0.769·27-s + 1.48·29-s + 0.718·31-s + 5.65·32-s − 2.08·33-s − 5.48·34-s + 8/3·36-s − 2.63·37-s − 3.89·38-s − 1.28·39-s + 0.609·43-s + ⋯ |
Λ(s)=(=((216⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅58
|
Sign: |
1
|
Analytic conductor: |
104.075 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5931447007 |
L(21) |
≈ |
0.5931447007 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+pT+pT2)2 |
| 5 | | 1 |
good | 3 | C2×C22 | (1+T+pT2)2(1−5T2+p2T4) |
| 7 | D4×C2 | 1−4T2+58T4−4p2T6+p4T8 |
| 11 | D4×C2 | 1−6T+18T2−60T3+199T4−60pT5+18p2T6−6p3T7+p4T8 |
| 13 | D4×C2 | 1−4T+8T2+28T3−302T4+28pT5+8p2T6−4p3T7+p4T8 |
| 17 | D4 | (1−4T+27T2−4pT3+p2T4)2 |
| 19 | D4×C2 | 1−6T+18T2−108T3+647T4−108pT5+18p2T6−6p3T7+p4T8 |
| 23 | D4×C2 | 1−52T2+1338T4−52p2T6+p4T8 |
| 29 | C22 | (1−4T+8T2−4pT3+p2T4)2 |
| 31 | D4 | (1−2T+52T2−2pT3+p2T4)2 |
| 37 | D4×C2 | 1+16T+128T2+752T3+4318T4+752pT5+128p2T6+16p3T7+p4T8 |
| 41 | C22 | (1−57T2+p2T4)2 |
| 43 | D4×C2 | 1−4T+8T2+4pT3−2p2T4+4p2T5+8p2T6−4p3T7+p4T8 |
| 47 | C2 | (1−8T+pT2)4 |
| 53 | C23 | 1+1438T4+p4T8 |
| 59 | D4×C2 | 1−8T+32T2−360T3+3854T4−360pT5+32p2T6−8p3T7+p4T8 |
| 61 | D4×C2 | 1−12T+72T2+108T3−4738T4+108pT5+72p2T6−12p3T7+p4T8 |
| 67 | D4×C2 | 1+30T+450T2+5220T3+49103T4+5220pT5+450p2T6+30p3T7+p4T8 |
| 71 | D4×C2 | 1−188T2+18214T4−188p2T6+p4T8 |
| 73 | D4×C2 | 1−70T2+7483T4−70p2T6+p4T8 |
| 79 | D4 | (1−2T+148T2−2pT3+p2T4)2 |
| 83 | D4×C2 | 1−22T+242T2−3036T3+35063T4−3036pT5+242p2T6−22p3T7+p4T8 |
| 89 | D4×C2 | 1−86T2+3435T4−86p2T6+p4T8 |
| 97 | C22 | (1+150T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.379962157056382291436883757890, −7.74688146716074226541689682474, −7.73760545097658337390851717339, −7.64410973305022098086438252038, −7.24254328040066159019561178917, −7.07412179564542852607016486749, −6.75373015284628119856514899684, −6.52864255387290912487410046196, −6.47362833642957498703992632024, −5.84955239770017212112471238498, −5.78441480650827764211035425254, −5.64290144240409760875496240929, −5.07635353255458939204698659288, −4.78067929007260748573436189825, −4.72069258549140689406239649492, −3.94836274476933997587892634598, −3.90692434001507114955212768179, −3.73068976830149818420888343179, −3.00081411423370612210622339578, −2.83111584436372240333552056504, −2.16761262225022100877252567896, −1.73709995370689421958360416190, −1.02974067913352657908585656083, −0.984444985671682020464278245201, −0.906736594402918891811455148430,
0.906736594402918891811455148430, 0.984444985671682020464278245201, 1.02974067913352657908585656083, 1.73709995370689421958360416190, 2.16761262225022100877252567896, 2.83111584436372240333552056504, 3.00081411423370612210622339578, 3.73068976830149818420888343179, 3.90692434001507114955212768179, 3.94836274476933997587892634598, 4.72069258549140689406239649492, 4.78067929007260748573436189825, 5.07635353255458939204698659288, 5.64290144240409760875496240929, 5.78441480650827764211035425254, 5.84955239770017212112471238498, 6.47362833642957498703992632024, 6.52864255387290912487410046196, 6.75373015284628119856514899684, 7.07412179564542852607016486749, 7.24254328040066159019561178917, 7.64410973305022098086438252038, 7.73760545097658337390851717339, 7.74688146716074226541689682474, 8.379962157056382291436883757890